Ploidy inference from single-cell data: application to human and mouse cell atlases

被引:1
|
作者
Takeuchi, Fumihiko [1 ,2 ,3 ]
Kato, Norihiro [3 ,4 ]
机构
[1] Univ Melbourne, Melbourne Med Sch, Baker Dept Cardiometab Hlth, Melbourne, Vic 3010, Australia
[2] Baker Heart & Diabet Inst, Syst Genom Lab, 75 Commercial Rd, Melbourne, Vic 3004, Australia
[3] Natl Ctr Global Hlth & Med, Res Inst, Dept Gene Diagnost & Therapeut, Tokyo 1628655, Japan
[4] Univ Tokyo, Grad Sch Med, Dept Clin Genome Informat, Tokyo 1130033, Japan
关键词
ploidy; single-cell; single-nucleus; ATAC-seq; cell cycle; copy number variation; cancer; TRANSPOSABLE ELEMENTS; CAENORHABDITIS-ELEGANS; EPIGENETIC REGULATION; ACTIVE TRANSPOSON; MOLECULAR-BIOLOGY; RNA INTERFERENCE; LINKED SITES; HAT FAMILY; GERM-LINE; ALIGNMENT;
D O I
10.1093/genetics/iyae061
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Ploidy is relevant to numerous biological phenomena, including development, metabolism, and tissue regeneration. Single-cell RNA-seq and other omics studies are revolutionizing our understanding of biology, yet they have largely overlooked ploidy. This is likely due to the additional assay step required for ploidy measurement. Here, we developed a statistical method to infer ploidy from single-cell ATAC-seq data, addressing this gap. When applied to data from human and mouse cell atlases, our method enabled systematic detection of polyploidy across diverse cell types. This method allows for the integration of ploidy analysis into single-cell studies. Additionally, this method can be adapted to detect the proliferating stage in the cell cycle and copy number variations in cancer cells. The software is implemented as the scPloidy package of the R software and is freely available from CRAN. Ploidy plays a crucial role in many biological processes. Though modern studies offer deep insights into biology, they often neglect ploidy due to measurement challenges. In this research, Takeuchi and Kato have developed a new method to identify ploidy levels using single-cell data, which facilitates the detection of polyploid cells across various cell types and bridges a gap in their understanding. This advancement also underscores the potential impact of integrating ploidy analysis with current single-cell genomic studies.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Representing and extracting knowledge from single-cell data
    Mihai, Ionut Sebastian
    Chafle, Sarang
    Henriksson, Johan
    BIOPHYSICAL REVIEWS, 2024, 16 (01) : 29 - 56
  • [22] Representing and extracting knowledge from single-cell data
    Ionut Sebastian Mihai
    Sarang Chafle
    Johan Henriksson
    Biophysical Reviews, 2024, 16 : 29 - 56
  • [23] SCENIC: single-cell regulatory network inference and clustering
    Aibar, Sara
    Gonzalez-Blas, Carmen Bravo
    Moerman, Thomas
    Van Anh Huynh-Thu
    Imrichova, Hana
    Hulselmans, Gert
    Rambow, Florian
    Marine, Jean-Christophe
    Geurts, Pierre
    Aerts, Jan
    van den Oord, Joost
    Atak, Zeynep Kalender
    Wouters, Jasper
    Aerts, Stein
    NATURE METHODS, 2017, 14 (11) : 1083 - +
  • [24] A robust and accurate single-cell data trajectory inference method using ensemble pseudotime
    Yifan Zhang
    Duc Tran
    Tin Nguyen
    Sergiu M. Dascalu
    Frederick C. Harris
    BMC Bioinformatics, 24
  • [25] A robust and accurate single-cell data trajectory inference method using ensemble pseudotime
    Zhang, Yifan
    Tran, Duc
    Nguyen, Tin
    Dascalu, Sergiu M.
    Harris, Frederick C.
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [26] Conifer: clonal tree inference for tumor heterogeneity with single-cell and bulk sequencing data
    Baghaarabani, Leila
    Goliaei, Sama
    Foroughmand-Araabi, Mohammad-Hadi
    Shariatpanahi, Seyed Peyman
    Goliaei, Bahram
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [27] Application of Single-Cell Sequencing to Immunotherapy
    Beaumont, Kristin G.
    Beaumont, Michael A.
    Sebra, Robert
    UROLOGIC CLINICS OF NORTH AMERICA, 2020, 47 (04) : 475 - 485
  • [28] Single-Cell Analysis of Ploidy and Centrosomes Underscores the Peculiarity of Normal Hepatocytes
    Faggioli, Francesca
    Vezzoni, Paolo
    Montagna, Cristina
    PLOS ONE, 2011, 6 (10):
  • [29] Complex Analysis of Single-Cell RNA Sequencing Data
    Anna A. Khozyainova
    Anna A. Valyaeva
    Mikhail S. Arbatsky
    Sergey V. Isaev
    Pavel S. Iamshchikov
    Egor V. Volchkov
    Marat S. Sabirov
    Viktoria R. Zainullina
    Vadim I. Chechekhin
    Rostislav S. Vorobev
    Maxim E. Menyailo
    Pyotr A. Tyurin-Kuzmin
    Evgeny V. Denisov
    Biochemistry (Moscow), 2023, 88 : 231 - 252
  • [30] Complex Analysis of Single-Cell RNA Sequencing Data
    Khozyainova, Anna A. A.
    Valyaeva, Anna A. A.
    Arbatsky, Mikhail S. S.
    Isaev, Sergey V. V.
    Iamshchikov, Pavel S. S.
    Volchkov, Egor V. V.
    Sabirov, Marat S. S.
    Zainullina, Viktoria R. R.
    Chechekhin, Vadim I. I.
    Vorobev, Rostislav S. S.
    Menyailo, Maxim E. E.
    Tyurin-Kuzmin, Pyotr A. A.
    Denisov, Evgeny V. V.
    BIOCHEMISTRY-MOSCOW, 2023, 88 (02) : 231 - 252