A physics-informed deep learning description of Knudsen layer reactivity reduction

被引:3
作者
McDevitt, Christopher J. [1 ]
Tang, Xian-Zhu [2 ]
机构
[1] Univ Florida, Dept Mat Sci & Engn, Nucl Engn Program, Gainesville, FL 32611 USA
[2] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
关键词
TRANSPORT PHENOMENA; NEURAL-NETWORKS; FUSION; MODEL;
D O I
10.1063/5.0207372
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A physics-informed neural network (PINN) is used to evaluate the fast ion distribution in the hot spot of an inertial confinement fusion target. The use of tailored input and output layers to the neural network is shown to enable a PINN to learn the parametric solution to the Vlasov-Fokker-Planck equation in the absence of any synthetic or experimental data. As an explicit demonstration of the approach, the specific problem of Knudsen layer fusion yield reduction is treated. Here, the predictions from the Vlasov-Fokker-Planck PINN are used to provide a non-perturbative solution of the fast ion tail in the vicinity of the hot spot, thus allowing the spatial profile of the fusion reactivity to be evaluated for a range of collisionalities and hot spot conditions. Excellent agreement is found between the predictions of the Vlasov-Fokker-Planck PINN and the results from traditional numerical solvers with respect to both the energy and spatial distribution of fast ions and the fusion reactivity profile, demonstrating that the Vlasov-Fokker-Planck PINN provides an accurate and efficient means of determining the impact of Knudsen layer yield reduction across a broad range of plasma conditions.
引用
收藏
页数:12
相关论文
共 47 条
  • [1] Arnaud J, 2024, Arxiv, DOI arXiv:2403.04948
  • [2] IMPROVED FORMULAS FOR FUSION CROSS-SECTIONS AND THERMAL REACTIVITIES
    BOSCH, HS
    HALE, GM
    [J]. NUCLEAR FUSION, 1992, 32 (04) : 611 - 631
  • [3] Braginskii S.I., 1965, Rev. Plasma Phys., V1, P205
  • [4] BRAGINSKII SI, 1958, SOV PHYS JETP-USSR, V6, P358
  • [5] A preliminary assessment of the sensitivity of uniaxially driven fusion targets to flux-limited thermal conduction modeling
    Chapman, D. A.
    Pecover, J. D.
    Chaturvedi, N.
    Niasse, N.
    Read, M. P.
    Vassilev, D. H.
    Chittenden, J. P.
    Hawker, N.
    Joiner, N.
    [J]. PHYSICS OF PLASMAS, 2021, 28 (07)
  • [6] Chapman S, 1990, MATH THEORY NONUNIFO
  • [7] Short-wavelength and three-dimensional instability evolution in National Ignition Facility ignition capsule designs
    Clark, D. S.
    Haan, S. W.
    Cook, A. W.
    Edwards, M. J.
    Hammel, B. A.
    Koning, J. M.
    Marinak, M. M.
    [J]. PHYSICS OF PLASMAS, 2011, 18 (08)
  • [8] Cordey J. G., 1978, Journal of Computational Physics, V28, P115, DOI 10.1016/0021-9991(78)90051-7
  • [9] Constraints on ion velocity distributions from fusion product spectroscopy
    Crilly, A. J.
    Appelbe, B. D.
    Mannion, O. M.
    Taitano, W.
    Hartouni, E. P.
    Moore, A. S.
    Gatu-Johnson, M.
    Chittenden, J. P.
    [J]. NUCLEAR FUSION, 2022, 62 (12)
  • [10] A PRACTICAL NONLOCAL MODEL FOR ELECTRON HEAT-TRANSPORT IN LASER PLASMAS
    EPPERLEIN, EM
    SHORT, RW
    [J]. PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1991, 3 (11): : 3092 - 3098