LOWER BOUNDS FOR THE BLOW-UP TIME IN A HIGHER-ORDER NONLINEAR KIRCHHOFF-TYPE EQUATION

被引:0
作者
Ye, Yaojun [1 ]
机构
[1] Zhejiang Univ Sci & Technol, Dept Math & Stat, Hangzhou 310023, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2024年 / 18卷 / 01期
关键词
Nonlinear higher-order Kirchhoff-type equation; initial-boundary value problem; nonlinear dissipation; blow-up; lower bound for the blow-up time; GLOBAL EXISTENCE; ASYMPTOTIC STABILITY; WAVE-EQUATIONS; ENERGY DECAY;
D O I
10.7153/jmi-2024-18-05
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with a nonlinear higher -order Kirchhoff -type equation with dissipation in a bounded domain. By establishing a first order differential inequality technique, a lower bound for the blow-up time is obtained when the blow-up of solution occurs.
引用
收藏
页码:69 / 77
页数:9
相关论文
共 27 条
[1]  
Adams R.A., 2003, Sobolev Spaces
[2]   Local asymptotic stability for polyharmonic Kirchhoff systems [J].
Autuori, G. ;
Pucci, P. .
APPLICABLE ANALYSIS, 2011, 90 (3-4) :493-514
[3]   LIFESPAN ESTIMATES FOR SOLUTIONS OF POLYHARMONIC KIRCHHOFF SYSTEMS [J].
Autuori, Giuseppina ;
Colasuonno, Francesca ;
Pucci, Patrizia .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (02)
[4]   Global Nonexistence for Nonlinear Kirchhoff Systems [J].
Autuori, Giuseppina ;
Pucci, Patrizia ;
Salvatori, Maria Cesarina .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 196 (02) :489-516
[5]   Asymptotic stability for nonlinear Kirchhoff systems [J].
Autuori, Giuseppina ;
Pucci, Patrizia ;
Salvatori, Maria Cesarina .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (02) :889-909
[6]   Blow-up and critical exponents for nonlinear hyperbolic equations [J].
Galaktionov, VA ;
Pohozaev, SI .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 53 (3-4) :453-466
[7]   Blow-up of the solution for higher-order Kirchhoff-type equations with nonlinear dissipation [J].
Gao, Qingyong ;
Li, Fushan ;
Wang, Yanguo .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2011, 9 (03) :686-698
[8]   Exponential energy decay estimates for the solutions of n-dimensional Kirchhoff type wave equation [J].
Gorain, Ganesh C. .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 177 (01) :235-242
[9]  
HES AMEDDINI E., 2011, Applied Mathematical Sciences, V5, P3575
[10]  
Komornik V., 1994, Exact Controllability and Stabilization, The multiplier method