Playing Atari with Hybrid Quantum-Classical Reinforcement Learning

被引:0
作者
Lockwood, Owen [1 ]
Si, Mei [2 ]
机构
[1] Rensselaer Polytech Inst, Dept Comp Sci, Troy, NY 12180 USA
[2] Rensselaer Polytech Inst, Dept Cognit Sci, Troy, NY USA
来源
NEURIPS 2020 WORKSHOP ON PRE-REGISTRATION IN MACHINE LEARNING, VOL 148 | 2020年 / 148卷
关键词
Pre-registration; Reinforcement Learning; Quantum Machine Learning; CIRCUITS; LEVEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite the successes of recent works in quantum reinforcement learning, there are still severe limitations on its applications due to the challenge of encoding large observation spaces into quantum systems. To address this challenge, we propose using a neural network as a data encoder, with the Atari games as our testbed. Specifically, the neural network converts the pixel input from the games to quantum data for a Quantum Variational Circuit (QVC); this hybrid model is then used as a function approximator in the Double Deep Q Networks algorithm. We explore a number of variations of this algorithm and find that our proposed hybrid models do not achieve meaningful results on two Atari games - Breakout and Pong. We suspect this is due to the significantly reduced sizes of the hybrid quantumclassical systems.
引用
收藏
页码:285 / 301
页数:17
相关论文
共 53 条
  • [1] Andrychowicz M., 2021, INT C LEARN REPR
  • [2] Quantum circuits with many photons on a programmable nanophotonic chip
    Arrazola, J. M.
    Bergholm, V
    Bradler, K.
    Bromley, T. R.
    Collins, M. J.
    Dhand, I
    Fumagalli, A.
    Gerrits, T.
    Goussev, A.
    Helt, L. G.
    Hundal, J.
    Isacsson, T.
    Israel, R. B.
    Izaac, J.
    Jahangiri, S.
    Janik, R.
    Killoran, N.
    Kumar, S. P.
    Lavoie, J.
    Lita, A. E.
    Mahler, D. H.
    Menotti, M.
    Morrison, B.
    Nam, S. W.
    Neuhaus, L.
    Qi, H. Y.
    Quesada, N.
    Repingon, A.
    Sabapathy, K. K.
    Schuld, M.
    Su, D.
    Swinarton, J.
    Szava, A.
    Tan, K.
    Tan, P.
    Vaidya, V. D.
    Vernon, Z.
    Zabaneh, Z.
    Zhang, Y.
    [J]. NATURE, 2021, 591 (7848) : 54 - +
  • [3] Quantum supremacy using a programmable superconducting processor
    Arute, Frank
    Arya, Kunal
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Barends, Rami
    Biswas, Rupak
    Boixo, Sergio
    Brandao, Fernando G. S. L.
    Buell, David A.
    Burkett, Brian
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Collins, Roberto
    Courtney, William
    Dunsworth, Andrew
    Farhi, Edward
    Foxen, Brooks
    Fowler, Austin
    Gidney, Craig
    Giustina, Marissa
    Graff, Rob
    Guerin, Keith
    Habegger, Steve
    Harrigan, Matthew P.
    Hartmann, Michael J.
    Ho, Alan
    Hoffmann, Markus
    Huang, Trent
    Humble, Travis S.
    Isakov, Sergei V.
    Jeffrey, Evan
    Jiang, Zhang
    Kafri, Dvir
    Kechedzhi, Kostyantyn
    Kelly, Julian
    Klimov, Paul V.
    Knysh, Sergey
    Korotkov, Alexander
    Kostritsa, Fedor
    Landhuis, David
    Lindmark, Mike
    Lucero, Erik
    Lyakh, Dmitry
    Mandra, Salvatore
    McClean, Jarrod R.
    McEwen, Matthew
    Megrant, Anthony
    Mi, Xiao
    [J]. NATURE, 2019, 574 (7779) : 505 - +
  • [4] Autonomous navigation of stratospheric balloons using reinforcement learning
    Bellemare, Marc G.
    Candido, Salvatore
    Castro, Pablo Samuel
    Gong, Jun
    Machado, Marlos C.
    Moitra, Subhodeep
    Ponda, Sameera S.
    Wang, Ziyu
    [J]. NATURE, 2020, 588 (7836) : 77 - +
  • [5] Parameterized quantum circuits as machine learning models
    Benedetti, Marcello
    Lloyd, Erika
    Sack, Stefan
    Fiorentini, Mattia
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (04)
  • [6] Quantum machine learning
    Biamonte, Jacob
    Wittek, Peter
    Pancotti, Nicola
    Rebentrost, Patrick
    Wiebe, Nathan
    Lloyd, Seth
    [J]. NATURE, 2017, 549 (7671) : 195 - 202
  • [7] Brockman G, 2016, Arxiv, DOI arXiv:1606.01540
  • [8] Broughton M, 2021, Arxiv, DOI arXiv:2003.02989
  • [9] Variational Quantum Circuits for Deep Reinforcement Learning
    Chen, Samuel Yen-Chi
    Yang, Chao-Han Huck
    Qi, Jun
    Chen, Pin-Yu
    Ma, Xiaoli
    Goan, Hsi-Sheng
    [J]. IEEE ACCESS, 2020, 8 (08): : 141007 - 141024
  • [10] Quantum convolutional neural networks
    Cong, Iris
    Choi, Soonwon
    Lukin, Mikhail D.
    [J]. NATURE PHYSICS, 2019, 15 (12) : 1273 - +