Painlevé Analysis of the Traveling Wave Reduction of the Third-Order Derivative Nonlinear Schrödinger Equation

被引:2
|
作者
Kudryashov, Nikolay A. [1 ]
Lavrova, Sofia F. [1 ]
机构
[1] Natl Res Nucl Univ, Moscow Engn Phys Inst MEPhI, 31 Kashirskoe Shosse, Moscow 115409, Russia
基金
俄罗斯科学基金会;
关键词
derivative Schr & ouml; dinger equation; Painlev & eacute; test; integrability; analytical solution; simplest equation method; CHIRPED OPTICAL SOLITONS; KAUP-NEWELL EQUATION;
D O I
10.3390/math12111632
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The second partial differential equation from the Kaup-Newell hierarchy is considered. This equation can be employed to model pulse propagation in optical fiber, wave propagation in plasma, or high waves in the deep ocean. The integrability of the explored equation in traveling wave variables is investigated using the Painlev & eacute; test. Periodic and solitary wave solutions of the studied equation are presented. The investigated equation belongs to the class of generalized nonlinear Schr & ouml;dinger equations and may be used for the description of optical solitons in a nonlinear medium.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Painlevé analysis of the resonant third-order nonlinear Schrödinger equation
    Kudryashov, Nikolay A.
    APPLIED MATHEMATICS LETTERS, 2024, 158
  • [2] The extended third-order nonlinear Schrödinger equation and Galilean transformation
    V. I. Karpman
    The European Physical Journal B - Condensed Matter and Complex Systems, 2004, 39 : 341 - 350
  • [3] Fundamental Solutions for the Generalised Third-Order Nonlinear Schrödinger Equation
    Abdelrahman M.A.E.
    Alharbi A.
    Almatrafi M.B.
    International Journal of Applied and Computational Mathematics, 2020, 6 (6)
  • [4] Dynamics of wave packets and soliton interaction in terms of the third-order nonlinear Schrödinger equation
    Gromov E.M.
    Piskunova L.V.
    Tyutin V.V.
    Radiophysics and Quantum Electronics, 1998, 41 (12) : 1051 - 1055
  • [5] Dynamics of wave packets and soliton interaction in terms of the third-order nonlinear Schrödinger equation
    Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
    Radiophys. Quantum Electron., 12 (1051-1055):
  • [6] Traveling wave solutions of the derivative nonlinear Schrödinger
    Kudryashov, Nikolay A.
    Lavrova, Sofia F.
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 477
  • [7] Dynamics of solitons and quasisolitons of the cubic third-order nonlinear Schrödinger equation
    Karpman, V.I.
    Rasmussen, J.J.
    Shagalov, A.G.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (2 II): : 266141 - 266141
  • [8] Dynamical behavior of the fractional generalized nonlinear Schrödinger equation of third-order
    Ahmed, Athar I.
    Algolam, Mohamed S.
    Cesarano, Clemente
    Rizk, Doaa
    Gassem, F.
    Mohammed, Wael W.
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (05)
  • [9] Center Manifold for the Third-Order Nonlinear Schrödinger Equation with Critical Lengths
    Mo Chen
    Acta Applicandae Mathematicae, 2022, 180
  • [10] Exact traveling wave solutions and bifurcations of the generalized derivative nonlinear Schrödinger equation
    Temesgen Desta Leta
    Jibin Li
    Nonlinear Dynamics, 2016, 85 : 1031 - 1037