Recent progress for chiral stationary phases based on chiral porous materials in high-performance liquid chromatography and gas chromatography separation

被引:2
作者
Wang, Zhen [1 ]
Wang, Wei [1 ]
Luo, Ai-Qin [1 ]
Yuan, Li-Ming [2 ]
机构
[1] Beijing Inst Technol, Sch Life Sci, Key Lab Mol Med & Biotherapy, 5 Zhongguancun South St, Beijing 100081, Peoples R China
[2] Yunnan Normal Univ, Dept Chem, Kunming 650500, Peoples R China
基金
中国国家自然科学基金;
关键词
chiral porous crystal materials; enantioseparation; post-modification; resolution; stationary phases; COVALENT ORGANIC FRAMEWORKS; CAGE COMPOUNDS; CRYSTALLINE; CHEMISTRY; CATALYSIS; CONSTRUCTION; COMPOSITE; DESIGN; HOST; MICROSPHERES;
D O I
10.1002/jssc.202400073
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Chirality is a fundamental property of nature. Separation and analysis of racemates are of great importance in the fields of medicine and the production of chiral biopharmaceutical intermediates. Chiral chromatography has the characteristics of a wide separation range, fast separation speed, and high efficiency. The development and preparation of novel chiral stationary phases with good chiral recognition and separation capacity is the core and key of chiral chromatographic separation and analysis. In this work, the representative research progress of novel chiral porous crystal materials including chiral covalent organic frameworks, chiral porous organic cages, chiral metal-organic frameworks, and chiral metal-organic cages used as chiral stationary phases of capillary gas chromatography and high-performance liquid chromatography over the last 4 years is reviewed in detail. The chiral recognition and separation properties of the representative studies in this review are also introduced and discussed.
引用
收藏
页数:16
相关论文
共 136 条
[1]   Silica SOS@HKUST-1 composite microspheres as easily packed stationary phases for fast separation [J].
Ahmed, Adham ;
Forster, Mark ;
Clowes, Rob ;
Bradshaw, Darren ;
Myers, Peter ;
Zhang, Haifei .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (10) :3276-3286
[2]   Chiral analysis in food science [J].
Alvarez-Rivera, Gerardo ;
Bueno, Monica ;
Ballesteros-Vivas, Diego ;
Cifuentes, Alejandro .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2020, 123
[3]   UiO-66@ SiO2 core-shell microparticles as stationary phases for the separation of small organic molecules [J].
Arrua, R. D. ;
Peristyy, A. ;
Nesterenko, P. N. ;
Das, A. ;
D'Alessandro, D. M. ;
Hilder, E. F. .
ANALYST, 2017, 142 (03) :517-524
[4]  
Brooks WH, 2011, CURR TOP MED CHEM, V11, P760
[5]   Solvent-Dependent Host-Guest Chemistry of an Fe8L12 Cubic Capsule [J].
Browne, Colm ;
Brenet, Simon ;
Clegg, Jack K. ;
Nitschke, Jonathan R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (07) :1944-1948
[6]   Porous Organic Cage Compounds as Highly Potent Affinity Materials for Sensing by Quartz Crystal Microbalances [J].
Brutschy, Malte ;
Schneider, Markus W. ;
Mastalerz, Michael ;
Waldvogel, Siegfried R. .
ADVANCED MATERIALS, 2012, 24 (45) :6049-+
[7]   Catalysis through Dynamic Spacer Installation of Multivariate Functionalities in Metal-Organic Frameworks [J].
Cao, Chen-Chen ;
Chen, Cheng-Xia ;
Wei, Zhang-Wen ;
Qiu, Qian-Feng ;
Zhu, Neng-Xiu ;
Xiong, Yang-Yang ;
Jiang, Ji-Jun ;
Wang, Dawei ;
Su, Cheng-Yong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (06) :2589-2593
[8]   Supramolecular Coordination: Self-Assembly of Finite Two- and Three-Dimensional Ensembles [J].
Chakrabarty, Rajesh ;
Mukherjee, Partha Sarathi ;
Stang, Peter J. .
CHEMICAL REVIEWS, 2011, 111 (11) :6810-6918
[9]   Chiral polyaniline modified Metal-Organic framework Core-Shell composite MIL-101@c-PANI for HPLC enantioseparation [J].
Chen, Ji-Kai ;
Yu, Yun-Yan ;
Xu, Na-Yan ;
Guo, Ping ;
Zhang, Jun-Hui ;
Wang, Bang-Jin ;
Xie, Sheng-Ming ;
Yuan, Li-Ming .
MICROCHEMICAL JOURNAL, 2021, 169
[10]   A chiral metal-organic framework core-shell microspheres composite for high-performance liquid chromatography enantioseparation [J].
Chen, Ji-Kai ;
Xu, Na-Yan ;
Guo, Ping ;
Wang, Bang-Jin ;
Zhang, Jun-Hui ;
Xie, Sheng-Ming ;
Yuan, Li-Ming .
JOURNAL OF SEPARATION SCIENCE, 2021, 44 (21) :3976-3985