Explaining customer churn prediction in telecom industry using tabular machine learning models

被引:3
|
作者
Poudel, Sumana Sharma [1 ]
Pokharel, Suresh [2 ]
Timilsina, Mohan [3 ]
机构
[1] Pokhara Univ, Nepal Coll Informat Technol, Lekhnath, Nepal
[2] Westcliff Univ, Presidential Grad Sch, Bhaktapur, Nepal
[3] Univ Galway, Data Sci Inst, Galway, Ireland
来源
MACHINE LEARNING WITH APPLICATIONS | 2024年 / 17卷
关键词
Customer churn; Explainable model; Global explainable; Local explainable; Telecommunication; IMBALANCED DATA; SATISFACTION; RETENTION; ALGORITHM; SERVICES; LOYALTY;
D O I
10.1016/j.mlwa.2024.100567
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The study addresses customer churn, a major issue in service-oriented sectors like telecommunications, where it refers to the discontinuation of subscriptions. The research emphasizes the importance of recognizing customer satisfaction for retaining clients, focusing specifically on early churn prediction as a key strategy. Previous approaches mainly used generalized classification techniques for churn prediction but often neglected the aspect of interpretability, vital for decision-making. This study introduces explainer models to address this gap, providing both local and global explanations of churn predictions. Various classification models, including the standout Gradient Boosting Machine (GBM), were used alongside visualization techniques like Shapley Additive Explanations plots and scatter plots for enhanced interpretability. The GBM model demonstrated superior performance with an 81% accuracy rate. A Wilcoxon signed rank test confirmed GBM's effectiveness over other models, with the p-value indicating significant performance differences. The study concludes that GBM is notably better for churn prediction, and the employed visualization techniques effectively elucidate key churn factors in the telecommunications sector.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Enhancing customer retention in telecom industry with machine learning driven churn prediction
    Sikri, Alisha
    Jameel, Roshan
    Idrees, Sheikh Mohammad
    Kaur, Harleen
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [2] Customer churn prediction in telecom sector using machine learning techniques
    Wagh, Sharmila K.
    Andhale, Aishwarya A.
    Wagh, Kishor S.
    Pansare, Jayshree R.
    Ambadekar, Sarita P.
    Gawande, S. H.
    RESULTS IN CONTROL AND OPTIMIZATION, 2024, 14
  • [3] Prediction of Customer Churn Behavior in the Telecommunication Industry Using Machine Learning Models
    Chang, Victor
    Hall, Karl
    Xu, Qianwen Ariel
    Amao, Folakemi Ololade
    Ganatra, Meghana Ashok
    Benson, Vladlena
    ALGORITHMS, 2024, 17 (06)
  • [4] Telecom customer churn prediction model : Analysis of machine learning techniques for churn prediction and factor identification in telecom sector
    Pareek, Anshul
    Poonam
    Arora, Shaifali Madan
    Gupta, Nidhi
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2024, 45 (02) : 613 - 630
  • [5] A Customer Churn Prediction Model in Telecom Industry Using Boosting
    Lu, Ning
    Lin, Hua
    Lu, Jie
    Zhang, Guangquan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2014, 10 (02) : 1659 - 1665
  • [6] A customer churn prediction model in telecom industry using Improved_XGBoost
    Swetha P.
    Dayananda R.B.
    International Journal of Cloud Computing, 2023, 12 (2-4) : 277 - 294
  • [7] Customer Churn Prediction In Telecommunication Industry Using Machine Learning Classifiers
    Mohammad, Nurul Izzati
    Ismail, Saiful Adli
    Kama, Mohd Nazri
    Yusop, Othman Mohd
    Azmi, Azri
    ICVISP 2019: PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON VISION, IMAGE AND SIGNAL PROCESSING, 2019,
  • [8] Customer Churn Prediction by Classification Models in Machine Learning
    Zhao, Heng
    Zuo, Xumin
    Xie, Yuanyuan
    2022 9TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ICEEE 2022), 2022, : 399 - 407
  • [9] A Churn Prediction Model Using Random Forest: Analysis of Machine Learning Techniques for Churn Prediction and Factor Identification in Telecom Sector
    Ullah, Irfan
    Raza, Basit
    Malik, Ahmad Kamran
    Imran, Muhammad
    Ul Islam, Saif
    Kim, Sung Won
    IEEE ACCESS, 2019, 7 : 60134 - 60149
  • [10] Customer churn prediction in telecommunication industry using data certainty
    Amin, Adnan
    Al-Obeidat, Feras
    Shah, Babar
    Adnan, Awais
    Loo, Jonathan
    Anwar, Sajid
    JOURNAL OF BUSINESS RESEARCH, 2019, 94 : 290 - 301