Toehold region triggered CRISPR/Cas12a trans-cleavage for detection of uracil-DNA glycosylase activity

被引:2
作者
Cui, Chenyu [1 ,2 ]
Guo, Guihuan [1 ]
Chen, Ting-Hsuan [1 ,3 ]
机构
[1] City Univ Hong Kong, Dept Biomed Engn, 83 Tat Chee Ave, Hong Kong, Peoples R China
[2] Hong Kong Sci Pk, Hong Kong Ctr Cerebro Cardiovasc Hlth Engn, Hong Kong, Peoples R China
[3] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen, Peoples R China
关键词
CRISPR/Cas12a; PAM free; toehold region; trans-cleavage; uracil DNA glycosylase; CRISPR-CAS12A; MACHINE;
D O I
10.1002/biot.202400097
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
DNA glycosylases are a group of enzymes that play a crucial role in the DNA repair process by recognizing and removing damaged or incorrect bases from DNA molecules, which maintains the integrity of the genetic information. The abnormal expression of uracil-DNA glycosylase (UDG), one of significant DNA glycosylases in the base-excision repair pathway, is linked to numerous diseases. Here, we proposed a simple UDG activity detection method based on toehold region triggered CRISPR/Cas12a trans-cleavage. The toehold region on hairpin DNA probe (HP) produced by UDG could induce the trans-cleavage of ssDNA with fluorophore and quencher, generating an obvious fluorescence signal. This protospacer adjacent motif (PAM)-free approach achieves remarkable sensitivity and specificity in detecting UDG, with a detection limit as low as 0.000368 U mL(-1). Moreover, this method is able to screen inhibitors and measure UDG in complex biological samples. These advantages render it highly promising for applications in clinical diagnosis and drug discovery.
引用
收藏
页数:7
相关论文
共 27 条
[21]   A DNA machine-based fluorescence amplification strategy for sensitive detection of uracil-DNA glycosylase activity [J].
Wu, Yushu ;
Wang, Lei ;
Zhu, Jing ;
Jiang, Wei .
BIOSENSORS & BIOELECTRONICS, 2015, 68 :654-659
[22]   Computational Study on DNA Repair: The Roles of Electrostatic Interactions Between Uracil-DNA Glycosylase (UDG) and DNA [J].
Xie, Yixin ;
Karki, Chitra B. ;
Chen, Jiawei ;
Liu, Dongfang ;
Li, Lin .
FRONTIERS IN MOLECULAR BIOSCIENCES, 2021, 8
[23]   Functional DNA Regulated CRISPR-Cas12a Sensors for Point-of-Care Diagnostics of Non-Nucleic-Acid Targets [J].
Xiong, Ying ;
Zhang, Jingjing ;
Yang, Zhenglin ;
Mou, Quanbing ;
Ma, Yuan ;
Xiong, Yonghua ;
Lu, Yi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (01) :207-213
[24]  
Yuan T, 2020, ANALYST, V145, P6388, DOI [10.1039/D0AN00663G, 10.1039/d0an00663g]
[25]   Development of a CRISPR-Cas-Based Biosensor for Rapid and Sensitive Detection of 8-Oxoguanine DNA Glycosylase [J].
Zhang, Qian ;
Zhao, Shuangnan ;
Tian, Xiaorui ;
Qiu, Jian-Ge ;
Zhang, Chun-yang .
ANALYTICAL CHEMISTRY, 2022, 94 (04) :2119-2125
[26]   Linked bridge hybridizing-induced split G-quadruplex DNA machine and its application to uracil-DNA glycosylase detection [J].
Zhang, Xiao Fang ;
Li, Na ;
Ling, Yu ;
Tang, Li ;
Li, Nian Bing ;
Luo, Hong Qun .
SENSORS AND ACTUATORS B-CHEMICAL, 2018, 255 :2589-2594
[27]   A versatile biosensing platform coupling CRISPR-Cas12a and aptamers for detection of diverse analytes [J].
Zhao, Xiangxiang ;
Li, Shanshan ;
Liu, Guang ;
Wang, Zhong ;
Yang, Zhiheng ;
Zhang, Quanwei ;
Liang, Mindong ;
Liu, Jiakun ;
Li, Zilong ;
Tong, Yaojun ;
Zhu, Guoliang ;
Wang, Xinye ;
Jiang, Lan ;
Wang, Weishan ;
Tan, Gao-Yi ;
Zhang, Lixin .
SCIENCE BULLETIN, 2021, 66 (01) :69-77