MeDIL: A Python']Python Package for Causal Modelling

被引:0
|
作者
Markham, Alex [1 ]
Chivukula, Aditya [2 ]
Grosse-Wentrup, Moritz [1 ,3 ,4 ]
机构
[1] Univ Vienna, Fac Comp Sci, Res Grp Neuroinformat, Vienna, Austria
[2] Ludwig Maximilian Univ Munich, Dept Stat, Munich, Germany
[3] Univ Vienna, Res Platform Data Sci, Vienna, Austria
[4] Vienna Cognit Sci Hub, Vienna, Austria
来源
INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138 | 2020年 / 138卷
关键词
causal modelling; !text type='Python']Python[!/text; structure learning; latent variable model; nonlinear independence; edge clique cover; generative adversarial network;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present the MeDIL Python package for causal modelling. Its current features focus on (i) nonlinear unconditional pairwise independence testing, (ii) constraint-based causal structure learning, and (iii) learning the corresponding functional causal models (FCMs), all for the class of measurement dependence inducing latent (MeDIL) causal models. MeDIL causal models and therefore the MeDIL software package are especially suited for analyzing data from fields such as psychometric, epidemiology, etc. that rely on questionnaire or survey data.
引用
收藏
页码:621 / 624
页数:4
相关论文
共 50 条
  • [1] CausalBO: A Python']Python Package for Causal Bayesian Optimization
    Roberts, Jeremy
    Javidian, Mohammad Ali
    SOUTHEASTCON 2024, 2024, : 1370 - 1375
  • [2] Causal ML: Python']Python package for causal inference machine learning
    Zhao, Yang
    Liu, Qing
    SOFTWAREX, 2023, 21
  • [3] PyVaporation: A Python']Python Package for Studying and Modelling Pervaporation Processes
    Sapegin, Denis Andzheevich
    Chekmachev, Aleksei Viktorovich
    MEMBRANES, 2022, 12 (08)
  • [4] AOtools: a Python']Python package for adaptive optics modelling and analysis
    Townson, M. J.
    Farley, O. J. D.
    de Xivry, G. Orban
    Osborn, J.
    Reeves, A. P.
    OPTICS EXPRESS, 2019, 27 (22) : 31316 - 31329
  • [5] PYKAT: Python']Python package for modelling precision optical interferometers
    Brown, Daniel D.
    Jones, Philip
    Rowlinson, Samuel
    Leavey, Sean
    Green, Anna C.
    Toyra, Daniel
    Freise, Andreas
    SOFTWAREX, 2020, 12
  • [6] Python package for causal discovery based on LiNGAM
    Ikeuchi, Takashi
    Ide, Mayumi
    Zeng, Yan
    Maeda, Takashi Nicholas
    Shimizu, Shohei
    Journal of Machine Learning Research, 2023, 24
  • [7] Causal-learn: Causal Discovery in Python']Python
    Zheng, Yujia
    Huang, Biwei
    Chen, Wei
    Ramsey, Joseph
    Gong, Mingming
    Cai, Ruichu
    Shimizu, Shohei
    Spirtes, Peter
    Zhang, Kun
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25
  • [8] WordGraph: A Python']Python Package for Reconstructing Interactive Causal Graphical Models from Text Data
    Ferdjaoui, Amine
    Affeldt, Severine
    Nadif, Mohamed
    PROCEEDINGS OF THE 17TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, WSDM 2024, 2024, : 1046 - 1049
  • [9] BCI Toolbox: An open-source python']python package for the Bayesian causal inference model
    Zhu, Haocheng
    Beierholm, Ulrik
    Shams, Ladan
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (07)
  • [10] A Novel Python']Python Package for the Dynamic Genome-Scale Modelling of Yeast Fermentation
    Troitino-Jordedo, D.
    Henriques, David
    Balsa-Canto, Eva
    12TH INTERNATIONAL CONFERENCE ON SIMULATION AND MODELLING IN THE FOOD AND BIO-INDUSTRY 2022 (FOODSIM'2022), 2022, : 72 - 75