Bearing fault diagnosis based on intrinsic time-scale decomposition and improved Support vector machine model

被引:2
|
作者
Sheng, Jinlu [1 ]
Dong, Shaojiang [2 ,3 ]
Liu, Zhu [4 ]
机构
[1] Chongqing Jiaotong Univ, Coll Traff & Transportat, Chongqing 400074, Peoples R China
[2] Chongqing Jiaotong Univ, Sch Mechatron & Automot Engn, Chongqing 400074, Peoples R China
[3] Changan Univ, Key Lab Rd Construct Technol & Equipment, MOE, Xian 710064, Peoples R China
[4] Qingdao Ocean Shipping Mariners Coll, Qingdao 266071, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
intrinsic time-scale decomposition; local tangent space alignment; improved support vector machine method; bearing; PCA;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In order to achieve the bearing fault diagnosis so as to ensure the steadiness of rotating machinery. This article proposed a model based on intrinsic time-scale decomposition (ITD) and improved support vector machine method (ISVM), so as to deal with the non-stationary and nonlinear characteristics of bearing vibration signals. Firstly, the feature extraction method intrinsic time-scale decomposition (ITD) is used and the energy entropy are extracted so as to process the vibration signal in this paper. Then, the local tangent space alignment (LTSA) method is introduced to extract the characteristic features and reduce the dimension of the selected entropy features. Finally, the features are used to train the ISVM model as to classify bearings defects. Cases of actual were analyzed. The results validate the effectiveness of the proposed algorithm.
引用
收藏
页码:849 / 859
页数:11
相关论文
共 50 条
  • [41] A new wind turbine fault diagnosis method based on ensemble intrinsic time-scale decomposition and WPT-fractal dimension
    Hu, Aijun
    Yan, Xiaoan
    Xiang, Ling
    RENEWABLE ENERGY, 2015, 83 : 767 - 778
  • [42] Fault diagnosis method of rolling bearing based on ensemble local mean decomposition and least squares support vector machine
    Liao, Xingzhi
    Wan, Zhou
    Xiong, Xin
    Huagong Xuebao/CIESC Journal, 2013, 64 (12): : 4667 - 4673
  • [43] The Fault Diagnosis of Elevator Based on the Autoregressive Model And the Support Vector Machine
    Xu, Shan
    Huang, YiJian
    FRONTIERS OF MANUFACTURING AND DESIGN SCIENCE III, PTS 1 AND 2, 2013, 271-272 : 1689 - 1694
  • [44] Fault Diagnosis Model based on Support Vector Machine and Genetic Algorithm
    Niu, Wei
    Wang, Guoqing
    Zhai, Zhengjun
    Cheng, Juan
    MECHANICAL AND ELECTRONICS ENGINEERING III, PTS 1-5, 2012, 130-134 : 2535 - +
  • [45] A New Engine Fault Diagnosis Model Based on Support Vector Machine
    Zhao, Lingling
    Yang, Kuihe
    2008 4TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-31, 2008, : 5326 - 5329
  • [46] Fault diagnosis model based on Gaussian support vector classifier machine
    Wu, Qi
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (09) : 6251 - 6256
  • [47] Adaptive time-scale decomposition and its application to gear fault diagnosis
    Xie, Zhijie
    Song, Baoyu
    Hao, Minghui
    Zhang, Feng
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2015, 47 (01): : 33 - 39
  • [48] Relevance vector machine based bearing fault diagnosis
    Lei, Liang-Yu
    Zhang, Qing
    PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 3492 - +
  • [49] Bearing Fault Diagnosis based on Independent Component Analysis and Optimized Support Vector Machine
    Thelaidjia, Tawfik
    Moussaoui, Abdelkrim
    Chenikher, Salah
    2015 7TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC), 2014, : 160 - 163
  • [50] Bearing fault diagnosis via kernel matrix construction based support vector machine
    Wu, Chenxi
    Chen, Tefang
    Jiang, Rong
    JOURNAL OF VIBROENGINEERING, 2017, 19 (05) : 3445 - 3461