Development of a convolutional neural network to accurately detect land use and land cover

被引:6
作者
Acuna-Alonso, Carolina [1 ,2 ]
Garcia-Ontiyuelo, Mario [1 ]
Barba-Barragans, Diego [1 ]
Alvarez, Xana [1 ]
机构
[1] Univ Vigo, Sch Forestry Engn, Agroforestry Grp, Pontevedra 36005, Spain
[2] Univ Tras Os Montes & Alto Douro, Ctr Invest & Tecnol Agroambientais & Biol, Ap 1013, P-5001801 Vila Real, Portugal
关键词
Deep learning; Image classification; Image prediction; Sentinel-2; CLASSIFICATION;
D O I
10.1016/j.mex.2024.102719
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The detection and modeling of Land Use and Land Cover (LULC) play pivotal roles in natural resource management, environmental modeling and assessment, and ecological connectivity management. However, addressing LULCC detection and modeling constitutes a complex data-driven process. In the present study, a Convolutional Neural Network (CNN) is employed due to its great potential in image classification. The development of these tools applies the deep learning method. A methodology has been developed that classifies the set of land uses in a natural area of special protection. This study area covers the Sierra del Cando (Galicia, northwest Spain), considered by the European Union as a Site of Community Interest and integrated in the Natura 2000 Network. The results of the CNN model developed show an accuracy of 91 % on training dataset and 88 % on test dataset. In addition, the model was tested on images of the study area, both from Sentinel-2 and PNOA. Despite some confusion especially in the residential class due to the characteristics in this area, CNNs prove to be a powerful classification tool.
引用
收藏
页数:9
相关论文
共 24 条
[11]   Review on Convolutional Neural Networks (CNN) in vegetation remote sensing [J].
Kattenborn, Teja ;
Leitloff, Jens ;
Schiefer, Felix ;
Hinz, Stefan .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 173 :24-49
[12]   Improved Bilinear CNN Model for Remote Sensing Scene Classification [J].
Li, Erzhu ;
Samat, Alim ;
Du, Peijun ;
Liu, Wei ;
Hu, Jinshan .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[13]   Weight estimation models for commercial Pinus radiata wood in small felling stands based on UAV-LiDAR data [J].
Lopez-Amoedo, Alberto ;
Silvosa, Marcos Rivas ;
Lago, Manuel Beiro ;
Lorenzo, Henrique ;
Acuna-Alonso, Carolina ;
Alvarez, Xana .
TREES FORESTS AND PEOPLE, 2023, 14
[14]   A survey of image classification methods and techniques for improving classification performance [J].
Lu, D. ;
Weng, Q. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2007, 28 (05) :823-870
[15]  
Ministerio de Transportes y Mobilidad Sostenible, Plan Nacional de Ortofotografia Aerea (PNOA).
[16]   Deep Transfer Learning for Land Use and Land Cover Classification: A Comparative Study [J].
Naushad, Raoof ;
Kaur, Tarunpreet ;
Ghaderpour, Ebrahim .
SENSORS, 2021, 21 (23)
[17]  
Ruiz LA, 2020, The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, VXLIII, P1061, DOI [10.5194/isprs-archives-xliii-b3-2020-1061-2020, 10.5194/isprs-archives-XLIII-B3-2020-1061-2020, DOI 10.5194/ISPRS-ARCHIVES-XLIII-B3-2020-1061-2020]
[18]   KerasBERT: Modeling the Keras Language [J].
Shorten, Connor ;
Khoshgoftaar, Taghi M. .
20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, :219-226
[19]   Interpretable Deep Learning Framework for Land Use and Land Cover Classification in Remote Sensing Using SHAP [J].
Temenos, Anastasios ;
Temenos, Nikos ;
Kaselimi, Maria ;
Doulamis, Anastasios ;
Doulamis, Nikolaos .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
[20]   Selecting features for LULC simultaneous classification of ambiguous classes by artificial neural network [J].
Tolentino, Franciele Marques ;
Bueno Trindade Galo, Maria de Lourdes .
REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2021, 24