RIESZ POTENTIALS IN THE LOCAL VARIABLE MORREY-LORENTZ SPACES AND SOME APPLICATIONS

被引:1
作者
Aykol, Canay [1 ]
Hasanov, Javanshir [2 ]
机构
[1] Ankara Univ, Fac Sci, Dept Math, TR-06560 Ankara, Turkiye
[2] Azerbaijan State Oil & Ind Univ, Baku, Azerbaijan
关键词
local variable Morrey-Lorentz space; Riesz potential; OPERATORS; BOUNDEDNESS; EXPONENT;
D O I
10.18514/MMN.2024.4465
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the boundedness of the Riesz potential I alpha in local variable Morrey-Lorentz spaces. Also we apply our results to particular operators such as fractional maximal operator, fractional Marcinkiewicz operator and fractional powers of some analytic semigroups in these spaces.
引用
收藏
页码:141 / 151
页数:11
相关论文
共 33 条
[21]   Gradient estimates below the duality exponent [J].
Mingione, Giuseppe .
MATHEMATISCHE ANNALEN, 2010, 346 (03) :571-627
[22]   CONVOLUTION OPERATORS AND (P, Q) SPACES [J].
ONEIL, R .
DUKE MATHEMATICAL JOURNAL, 1963, 30 (01) :129-&
[23]  
Ragusa MA, 2013, NONLINEAR ANAL-THEOR, V93, P162, DOI 10.1016/j.na.2013.07.023
[24]   Embeddings for Morrey-Lorentz Spaces [J].
Ragusa, Maria Alessandra .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 154 (02) :491-499
[25]  
Ruzicka M, 2000, LECT NOTES MATH, V1748, P1
[26]   On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators [J].
Samko, S .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2005, 16 (5-6) :461-482
[27]  
Samko SG., 2003, J FUNCTION SPACES AP, V1, P45
[28]   BOUNDEDNESS OF CLASSICAL OPERATORS ON CLASSICAL LORENTZ SPACES [J].
SAWYER, E .
STUDIA MATHEMATICA, 1990, 96 (02) :145-158
[29]  
Stein E., 1958, Trans. Amer. Math. Soc, V88, P430, DOI DOI 10.1090/S0002-9947-1958-0112932-2
[30]  
Stein E.M., 1970, Singular Integrals and Differentiability Properties of Functions, V30