RIESZ POTENTIALS IN THE LOCAL VARIABLE MORREY-LORENTZ SPACES AND SOME APPLICATIONS

被引:1
作者
Aykol, Canay [1 ]
Hasanov, Javanshir [2 ]
机构
[1] Ankara Univ, Fac Sci, Dept Math, TR-06560 Ankara, Turkiye
[2] Azerbaijan State Oil & Ind Univ, Baku, Azerbaijan
关键词
local variable Morrey-Lorentz space; Riesz potential; OPERATORS; BOUNDEDNESS; EXPONENT;
D O I
10.18514/MMN.2024.4465
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the boundedness of the Riesz potential I alpha in local variable Morrey-Lorentz spaces. Also we apply our results to particular operators such as fractional maximal operator, fractional Marcinkiewicz operator and fractional powers of some analytic semigroups in these spaces.
引用
收藏
页码:141 / 151
页数:11
相关论文
共 33 条
[1]   The boundedness of Hilbert transform in the local Morrey-Lorentz spaces [J].
Aykol, C. ;
Guliyev, V. S. ;
Kucukaslan, A. ;
Serbetci, A. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2016, 27 (04) :318-330
[2]   Boundedness of the maximal operator in the local Morrey-Lorentz spaces [J].
Aykol, Canay ;
Guliyev, Vagif S. ;
Serbetci, Ayhan .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
[3]  
Bennett C., 1988, INTERPOLATION OPERAT, V129 of
[4]   Necessary and Sufficient Conditions for the Boundedness of the Riesz Potential in Local Morrey-type Spaces [J].
Burenkov, Victor I. ;
Guliyev, Vagif S. .
POTENTIAL ANALYSIS, 2009, 30 (03) :211-249
[5]  
CALDERON AP, 1966, STUD MATH, V26, P273
[6]   Well-posedness of the Euler equation in Triebel-Lizorkin-Morrey spaces [J].
Chen, Dongxiang ;
Chen, Xiaoli ;
Sun, Lijing .
APPLICABLE ANALYSIS, 2020, 99 (05) :772-795
[7]  
Chiarenza F., 1987, Rend. Math, V7, P273
[8]  
Diening L., 2005, Proceedings of the Conference held in Milovy, Bohemian-Moravian Uplands, May 28-June 2, 2004, P38
[9]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[10]  
DIFAZIO G, 1991, B UNIONE MAT ITAL, V5A, P323