DIFFERENTIABLE PARTICLE FILTERS WITH SMOOTHLY JITTERED RESAMPLING

被引:0
作者
Li, Yichao [1 ,2 ]
Wang, Wenshuo [2 ]
Deng, Ke [1 ]
Liu, Jun S. [2 ]
机构
[1] Tsinghua Univ, Ctr Stat Sci, Beijing 100084, Peoples R China
[2] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Reparametrization trick; resampling; sequential Monte Carlo; state space models;
D O I
10.5705/ss.202022.0256
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Particle filters, also known as sequential Monte Carlo, are a powerful computational tool for making inference with dynamical systems. In particular, it is widely used in state space models to estimate the likelihood function. However, estimating the gradient of the likelihood function is hard with sequential Monte Carlo, partially because the commonly used reparametrization trick is not applicable due to the discrete nature of the resampling step. To address this problem, we propose utilizing the smoothly jittered particle filter, which smooths the discrete resampling by adding noise to the resampled particles. We show that when the noise level is chosen correctly, no additional asymptotic error is introduced to the resampling step. We support our method with simulations.
引用
收藏
页码:1241 / 1262
页数:22
相关论文
共 33 条
  • [1] Aitchison L, 2019, ADV NEUR IN, V32
  • [2] Ali A, 2020, PR MACH LEARN RES, V119
  • [3] Andrieu C, 2005, IEEE DECIS CONTR P, P332
  • [4] Particle Markov chain Monte Carlo methods
    Andrieu, Christophe
    Doucet, Arnaud
    Holenstein, Roman
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 : 269 - 342
  • [5] Le TA, 2018, Arxiv, DOI arXiv:1705.10306
  • [6] Boulanger-Lewandowski N., 2012, Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription
  • [7] Chopin Nicolas, 2020, Springer Series in Statistics, V4
  • [8] Chung JY, 2016, Arxiv, DOI [arXiv:1506.02216, DOI 10.48550/ARXIV.1506.02216]
  • [9] Corenflos A, 2021, PR MACH LEARN RES, V139
  • [10] Doucet A, 2001, STAT ENG IN, P3