Large deviations for out of equilibrium correlations in the symmetric simple exclusion process

被引:0
|
作者
Bodineau, Thierry [1 ]
Dagallier, Benoit [2 ,3 ]
机构
[1] Univ Paris Saclay, IHES, CNRS, Lab Alexandre Grothendieck, 35 Route Chartres, F-91440 Bures Sur Yvette, France
[2] Univ Cambridge, DPMMS, Cambridge, England
[3] NYU, Courant Inst, New York, NY USA
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2024年 / 29卷
基金
欧洲研究理事会;
关键词
Large deviations; out of equilibrium; correlations; exclusion process; relative entropy; LONG-RANGE CORRELATIONS; LOGARITHMIC SOBOLEV INEQUALITIES; QUADRATIC FLUCTUATIONS; HYDRODYNAMICS; ENTROPY; DENSITY;
D O I
10.1214/24-EJP1121
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For finite size Markov chains, the Donsker-Varadhan theory fully describes the large deviations of the time averaged empirical measure. We are interested in the extension of the Donsker-Varadhan theory for a large size non -equilibrium system: the onedimensional symmetric simple exclusion process connected with reservoirs at different densities. The Donsker-Varadhan functional encodes a variety of scales depending on the observable of interest. In this paper, we focus on the time -averaged two point correlations and investigate the large deviations from the steady state behaviour. To control two point correlations out of equilibrium, the key input is the construction of a simple approximation to the invariant measure. This approximation is quantitative in time and space as estimated through relative entropy bounds building on the work of Jara and Menezes [32].
引用
收藏
页码:1 / 96
页数:96
相关论文
共 50 条
  • [41] Solution to the Quantum Symmetric Simple Exclusion Process: The Continuous Case
    Denis Bernard
    Tony Jin
    Communications in Mathematical Physics, 2021, 384 : 1141 - 1185
  • [42] DYNAMICAL LARGE DEVIATIONS FOR THE BOUNDARY DRIVEN WEAKLY ASYMMETRIC EXCLUSION PROCESS
    Bertini, Lorenzo
    Landim, Claudio
    Mourragui, Mustapha
    ANNALS OF PROBABILITY, 2009, 37 (06): : 2357 - 2403
  • [43] Finite Size Corrections to the Large Deviation Function of the Density in the One Dimensional Symmetric Simple Exclusion Process
    Bernard Derrida
    Martin Retaux
    Journal of Statistical Physics, 2013, 152 : 824 - 845
  • [44] Finite Size Corrections to the Large Deviation Function of the Density in the One Dimensional Symmetric Simple Exclusion Process
    Derrida, Bernard
    Retaux, Martin
    JOURNAL OF STATISTICAL PHYSICS, 2013, 152 (05) : 824 - 845
  • [45] Non-equilibrium Stationary States in the Symmetric Simple Exclusion with Births and Deaths
    De Masi, Anna
    Presutti, Errico
    Tsagkarogiannis, Dimitrios
    Vares, Maria Eulalia
    JOURNAL OF STATISTICAL PHYSICS, 2012, 147 (03) : 519 - 528
  • [46] Non-equilibrium Stationary States in the Symmetric Simple Exclusion with Births and Deaths
    Anna De Masi
    Errico Presutti
    Dimitrios Tsagkarogiannis
    Maria Eulalia Vares
    Journal of Statistical Physics, 2012, 147 : 519 - 528
  • [47] Symmetric simple exclusion process: Regularity of the self-diffusion coefficient
    Landim, C
    Olla, S
    Varadhan, SRS
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 224 (01) : 307 - 321
  • [48] Combinatorics of the quantum symmetric simple exclusion process, associahedra and free cumulants
    Biane, Philippe
    ANNALES DE L INSTITUT HENRI POINCARE D, 2025, 12 (01): : 189 - 206
  • [49] Symmetric Simple Exclusion Process:¶Regularity of the Self-Diffusion Coefficient
    C. Landim
    S. Olla
    S. R. S. Varadhan
    Communications in Mathematical Physics, 2001, 224 : 307 - 321
  • [50] Unexpected effects of disorder on current fluctuations in the symmetric simple exclusion process
    Sakai, Issei
    Akimoto, Takuma
    PHYSICAL REVIEW E, 2025, 111 (01)