Magic of random matrix product states

被引:3
|
作者
Chen, Liyuan [1 ,2 ]
Garcia, Roy J. [1 ]
Bu, Kaifeng [1 ]
Jaffe, Arthur [1 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
关键词
CLASSICAL SIMULATION; UNITARY; INTEGRATION;
D O I
10.1103/PhysRevB.109.174207
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magic, or nonstabilizerness, characterizes how far away a state is from the stabilizer states, making it an important resource in quantum computing, under the formalism of the Gotteman-Knill theorem. In this paper, we study the magic of the one-dimensional (1D) random matrix product states (RMPSs) using the L 1 -norm measure. We first relate the L 1 norm to the L 4 norm. We then employ a unitary four -design to map the L 4 norm to a 24 -component statistical physics model. By evaluating partition functions of the model, we obtain a lower bound on the expectation values of the L 1 norm. This bound grows exponentially with respect to the qudit number n , indicating that the 1D RMPS is highly magical. Our numerical results confirm that the magic grows exponentially in the qubit case.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Typicality in random matrix product states
    Garnerone, Silvano
    de Oliveira, Thiago R.
    Zanardi, Paolo
    PHYSICAL REVIEW A, 2010, 81 (03):
  • [2] Statistical properties of random matrix product states
    Garnerone, Silvano
    de Oliveira, Thiago R.
    Haas, Stephan
    Zanardi, Paolo
    PHYSICAL REVIEW A, 2010, 82 (05):
  • [3] Matrix Product States, Random Matrix Theory and the Principle of Maximum Entropy
    Collins, Benoit
    Gonzalez-Guillen, Carlos E.
    Perez-Garcia, David
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 320 (03) : 663 - 677
  • [4] Matrix Product States, Random Matrix Theory and the Principle of Maximum Entropy
    Benoît Collins
    Carlos E. González-Guillén
    David Pérez-García
    Communications in Mathematical Physics, 2013, 320 : 663 - 677
  • [5] Random Tensor Theory: Extending Random Matrix Theory to Mixtures of Random Product States
    Ambainis, Andris
    Harrow, Aram W.
    Hastings, Matthew B.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 310 (01) : 25 - 74
  • [6] Random Tensor Theory: Extending Random Matrix Theory to Mixtures of Random Product States
    Andris Ambainis
    Aram W. Harrow
    Matthew B. Hastings
    Communications in Mathematical Physics, 2012, 310 : 25 - 74
  • [7] Generalized quantum microcanonical ensemble from random matrix product states
    Garnerone, Silvano
    de Oliveira, Thiago R.
    PHYSICAL REVIEW B, 2013, 87 (21)
  • [8] Emergent Statistical Mechanics from Properties of Disordered Random Matrix Product States
    Haferkamp, Jonas
    Bertoni, Christian
    Roth, Ingo
    Eisert, Jens
    PRX QUANTUM, 2021, 2 (04):
  • [9] Dicke states as matrix product states
    Raveh, David
    Nepomechie, Rafael I.
    PHYSICAL REVIEW A, 2024, 110 (05)
  • [10] ANALYTIC TIME EVOLUTION, RANDOM PHASE APPROXIMATION, AND GREEN FUNCTIONS FOR MATRIX PRODUCT STATES
    Kinder, Jesse M.
    Ralph, Claire C.
    Chan, Garnet Kin-Lic
    QUANTUM INFORMATION AND COMPUTATION FOR CHEMISTRY, 2014, 154 : 179 - 191