Improving Electromyographic Muscle Response Times through Visual and Tactile Prior Stimulation in Virtual Reality

被引:1
作者
Sehrt, Jessica [1 ]
Ferreira, Leonardo Leite [1 ]
Weyers, Karsten [1 ]
Mahmood, Amir [1 ]
Kosch, Thomas [2 ]
Schwind, Valentin [1 ]
机构
[1] Frankfurt Univ Appl Sci, Frankfurt, Germany
[2] Humboldt Univ, Berlin, Germany
来源
PROCEEDINGS OF THE 2024 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYTEMS, CHI 2024 | 2024年
关键词
Physiological Sensing; Electromyography; Electrical Muscle Stimulation; Virtual Reality; Assistive Systems; ELECTRICAL-STIMULATION; VIBROTACTILE FEEDBACK; EMG; BIOFEEDBACK; INHIBITION; ACTIVATION; MANAGEMENT; VIBRATION; STRENGTH; TENDONS;
D O I
10.1145/3613904.3642091
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Electromyography (EMG) enables hands-free interactions by detecting muscle activity at different human body locations. Previous studies have demonstrated that input performance based on isometric contractions is muscle-dependent and can benefit from synchronous biofeedback. However, it remains unknown whether stimulation before interaction can help to localize and tense a muscle faster. In a response-based VR experiment (N=21), we investigated whether prior stimulation using visual or tactile cues at four different target muscles (biceps, triceps, upper leg, calf) can help reduce the time to perform isometric muscle contractions. The results show that prior stimulation decreases EMG reaction times with visual, vibrotactile, and electrotactile cues. Our experiment also revealed important findings regarding learning and fatigue at the different body locations. We provide qualitative insights into the participants' perceptions and discuss potential reasons for the improved interaction. We contribute with implications and use cases for prior stimulated muscle activation.
引用
收藏
页数:17
相关论文
共 140 条
[1]   Multichannel haptic feedback unlocks prosthetic hand dexterity [J].
Abd, Moaed A. ;
Ingicco, Joseph ;
Hutchinson, Douglas T. ;
Tognoli, Emmanuelle ;
Engeberg, Erik D. .
SCIENTIFIC REPORTS, 2022, 12 (01)
[2]  
Agliotti S., 1997, TRENDS NEUROSCI, V20, P1997
[3]  
Agustin Javier San, 2009, CHI 09 EXTENDED ABST, P3247, DOI [10.1145/1520340.1520466, DOI 10.1145/1520340.1520466]
[4]  
Al-Jumaily A., 2009, IIWAS2009, P582, DOI [10.1145/1806338.1806448, DOI 10.1145/1806338.1806448]
[5]  
Alotaibi Y., 2020, P 33 INT BCS HUM COM, P51, DOI 10.14236/ewic/hci20dc.12
[6]   Advancing Muscle-Computer Interfaces with High-Density Electromyography [J].
Amma, Christoph ;
Krings, Thomas ;
Boer, Jonas ;
Schultz, Tanja .
CHI 2015: PROCEEDINGS OF THE 33RD ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, 2015, :929-938
[7]  
[Anonymous], 2007, BRIT J PAIN, DOI DOI 10.1177/204946370700100103
[8]   A Switching Regime Model for the EMG-Based Control of a Robot Arm [J].
Artemiadis, Panagiotis K. ;
Kyriakopoulos, Kostas J. .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2011, 41 (01) :53-63
[9]  
Bansal R, 2022, SYSTEMATIC REV MUSCL
[10]  
Barreto A. B., 1999, SIGCAPH Newsletter, P6, DOI 10.1145/569270.569272