Multifunctional Lithium Phytate/Carbon Nanotube Double-Layer-Modified Separators for High-Performance Lithium-Sulfur Batteries

被引:8
作者
Hu, Jing [1 ,2 ]
Wang, Zhenyu [1 ]
Yuan, Huimin [1 ]
Yang, Mingyang [1 ]
Chen, Jingjing [2 ]
Fu, Xuelian [1 ]
Wang, Zhiqiang [1 ]
Luo, Wen [1 ]
Huang, Yongcong [1 ]
Zhang, Fangchang [1 ]
Liu, Chen [2 ]
Lu, Zhouguang [1 ]
机构
[1] Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
[2] Shenzhen Univ, Coll Mat Sci & Engn, Guangdong Res Ctr Interfacial Engn Funct Mat, Guangdong Prov Key Lab New Energy Mat Serv Safety, Shenzhen 518060, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
lithium-sulfur batteries; separatormodification; lithium phytate; shuttle effect; lithium dendrite;
D O I
10.1021/acsami.4c04541
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Li dendrite and the shuttle effect are the two primary hindrances to the commercial application of lithium-sulfur batteries (LSBs). Here, a multifunctional separator has been fabricated via successively coating carbon nanotubes (CNTs) and lithium phytate (LP) onto a commercial polypropylene (PP) separator to improve the performance of LSBs. The LP coating layer with abundant electronegative phosphate group as permselective ion sieve not only reduces the polysulfide shuttle but also facilitates uniform Li+ flux through the PP separator. And the highly conductive CNTs on the second layer act as a second collector to accelerate the reversible conversion of sulfide species. The synergistic effect of LP and CNTs further increases the electrolyte wettability and reaction kinetics of cells with a modified separator and suppresses the shuttle effect and growth of Li dendrite. Consequently, the LSBs present much enhanced rate performance and cyclic performance. It is expected that this study may generate an executable tactic for interface engineering of separator to accelerate the industrial application process of LSBs.
引用
收藏
页码:39215 / 39224
页数:10
相关论文
共 43 条
[1]   Hollow Bio-derived Polymer Nanospheres with Ordered Mesopores for Sodium-Ion Battery [J].
Ai, Yan ;
You, Yuxiu ;
Wei, Facai ;
Jiang, Xiaolin ;
Han, Zhuolei ;
Cui, Jing ;
Luo, Hao ;
Li, Yucen ;
Xu, Zhixin ;
Xu, Shunqi ;
Yang, Jun ;
Bao, Qinye ;
Jing, Chengbin ;
Fu, Jianwei ;
Cheng, Jiangong ;
Liu, Shaohua .
NANO-MICRO LETTERS, 2020, 12 (01)
[2]   Understanding Dual-Polar Group Functionalized COFs for Accelerating Li-Ion Transport and Dendrite-Free Deposition in Lithium Metal Anodes [J].
An, Qi ;
Wang, Hong-en ;
Zhao, Genfu ;
Wang, Shimin ;
Xu, Lufu ;
Wang, Han ;
Fu, Yao ;
Guo, Hong .
ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (02)
[3]   Rapid leakage responsive and self-healing Li-metal batteries [J].
Chen, Hongli ;
Liu, Jie ;
Zhou, Xi ;
Ji, Haoqing ;
Liu, Sisi ;
Wang, Mengfan ;
Qian, Tao ;
Yan, Chenglin .
CHEMICAL ENGINEERING JOURNAL, 2021, 404
[4]   In situ formation of high performance Ni-phytate on Ni-foam for efficient electrochemical water oxidation [J].
Chen, Xiaojuan ;
Zeng, Guangfeng ;
Gao, Taotao ;
Jin, Zhaoyu ;
Zhang, Yajie ;
Yuan, Hongyan ;
Xiao, Dan .
ELECTROCHEMISTRY COMMUNICATIONS, 2017, 74 :42-47
[5]   Bifunctional Separator with a Light-Weight Carbon-Coating for Dynamically and Statically Stable Lithium-Sulfur Batteries [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (33) :5299-5306
[6]   Recent Advances and Applications Toward Emerging Lithium-Sulfur Batteries: Working Principles and Opportunities [J].
Deng, Rongyu ;
Wang, Meng ;
Yu, Huanyu ;
Luo, Shunrui ;
Li, Jinhui ;
Chu, Fulu ;
Liu, Bin ;
Wu, Feixiang .
ENERGY & ENVIRONMENTAL MATERIALS, 2022, 5 (03) :777-799
[7]   Ion sieve membrane: Homogenizing Li+ flux and restricting polysulfides migration enables long life and highly stable Li-S battery [J].
Diao, Wan-Yue ;
Xie, Dan ;
Li, Dong-Lin ;
Tao, Fang-Yu ;
Liu, Chang ;
Sun, Hai-Zhu ;
Zhang, Xiao-Ying ;
Li, Wen-Liang ;
Wu, Xing-Long ;
Zhang, Jing-Ping .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 627 :730-738
[8]   Rationally designed NiS2-MnS/MoS2 hybridized 3D hollow N-Gr microsphere framework-modified celgard separator for highly efficient Li-S batteries [J].
Doan, Thi Luu Luyen ;
Nguyen, Dinh Chuong ;
Amaral, R. ;
Dzade, Nelson Y. ;
Kim, Cheol Sang ;
Park, Chan Hee .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 319
[9]   Quantum Spin Exchange Interactions to Accelerate the Redox Kinetics in Li-S Batteries [J].
Du, Yu ;
Chen, Weijie ;
Wang, Yu ;
Yu, Yue ;
Guo, Kai ;
Qu, Gan ;
Zhang, Jianan .
NANO-MICRO LETTERS, 2024, 16 (01)
[10]   Ternary Transition Metal Sulfide as High Real Energy Cathode for Lithium-Sulfur Pouch Cell Under Lean Electrolyte Conditions [J].
Guo, Hao ;
Hu, Jing ;
Yuan, Huimin ;
Wu, Ningning ;
Li, Yingzhi ;
Liu, Guiyu ;
Qin, Ning ;
Liao, Kemeng ;
Li, Zhiqiang ;
Luo, Wen ;
Gu, Shuai ;
Wan, Weihua ;
Shi, Bin ;
Xu, Xusheng ;
Yang, Qinghua ;
Shi, Jiayuan ;
Lu, Zhouguang .
SMALL METHODS, 2022, 6 (02)