Koszul Complexes and Relative Homological Algebra of Functors Over Posets

被引:3
作者
Chacholski, Wojciech [1 ]
Guidolin, Andrea [1 ]
Ren, Isaac [1 ]
Scolamiero, Martina [1 ]
Tombari, Francesca [2 ]
机构
[1] KTH, Dept Math, S-10044 Stockholm, Sweden
[2] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
关键词
Relative homological algebra; Poset representations; Betti diagrams; Koszul complexes; Topological data analysis; Multi-parameter persistent homology;
D O I
10.1007/s10208-024-09660-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Under certain conditions, Koszul complexes can be used to calculate relative Betti diagrams of vector space-valued functors indexed by a poset, without the explicit computation of global minimal relative resolutions. In relative homological algebra of such functors, free functors are replaced by an arbitrary family of functors. Relative Betti diagrams encode the multiplicities of these functors in minimal relative resolutions. In this article we provide conditions under which grading the chosen family of functors leads to explicit Koszul complexes whose homology dimensions are the relative Betti diagrams, thus giving a scheme for the computation of these numerical descriptors.
引用
收藏
页数:45
相关论文
共 26 条
[1]  
[Anonymous], 1956, Trans. Amer. Math. Soc.
[2]  
[Anonymous], 2000, Relative Homological Algebra
[3]   Approximation by interval-decomposables and interval resolutions of persistence modules * [J].
Asashiba, Hideto ;
Escolar, Emerson G. ;
Nakashima, Ken ;
Yoshiwaki, Michio .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2023, 227 (10)
[4]  
Asashiba H, 2022, Arxiv, DOI arXiv:1911.01637
[5]   RELATIVE HOMOLOGY AND REPRESENTATION-THEORY .1. RELATIVE HOMOLOGY AND HOMOLOGICALLY FINITE SUBCATEGORIES [J].
AUSLANDER, M ;
SOLBERG, O .
COMMUNICATIONS IN ALGEBRA, 1993, 21 (09) :2995-3031
[6]  
AUSLANDER M, 1995, REPRESENTATION THEOR
[7]   Homological approximations in persistence theory [J].
Blanchette, Benjamin ;
Brustle, Thomas ;
Hanson, Eric J. .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2024, 76 (01) :66-103
[8]  
Botnan MB, 2024, Arxiv, DOI arXiv:2208.00300
[9]  
Botnan MB, 2024, Arxiv, DOI arXiv:2107.06800
[10]   Homological Algebra for Persistence Modules [J].
Bubenik, Peter ;
Milicevic, Nikola .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2021, 21 (05) :1233-1278