Discovery of optimal silver nanowires synthesis conditions using machine learning

被引:1
|
作者
Du, Yuncheng [1 ]
Du, Dongping [2 ]
机构
[1] Univ Houston, Dept Biomed Engn, Houston, TX 77004 USA
[2] Texas Tech Univ, Dept Ind Mfg & Syst Engn, Lubbock, TX USA
基金
美国国家科学基金会;
关键词
Nanocrystalline materials; Machine learning; Random forest; Silver nanowires; Synthesis optimization;
D O I
10.1016/j.matlet.2024.137399
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Silver nanowires (AgNWs) are essential nanomaterials for diverse applications, including medical devices. Their morphology, like length and diameter, significantly affects conductivity, which is crucial for effective electrical signal transmission. Traditional trial-and-error approaches to adjust synthesis conditions for morphology control are time consuming. To overcome the limitation, this study integrates machine learning (ML) with experimental approaches to investigate how nucleants affect AgNWs synthesis. Random forest regression models are developed to analyze the effect of varying nucleant concentrations on morphology. Our approach builds a new framework to optimize synthesis conditions for morphology control, accelerating advancements in manufacturing capabilities.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Higgs Boson Discovery using Machine Learning Methods with Pyspark
    Azhari, Mourad
    Abarda, Abdallah
    Ettaki, Badia
    Zerouaoui, Jamal
    Dakkon, Mohamed
    11TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT) / THE 3RD INTERNATIONAL CONFERENCE ON EMERGING DATA AND INDUSTRY 4.0 (EDI40) / AFFILIATED WORKSHOPS, 2020, 170 : 1141 - 1146
  • [42] Discovery pipeline of cancer transcriptomic biomarkers using machine learning
    Kim, Eileen
    CANCER RESEARCH, 2019, 79 (13)
  • [43] Using machine learning for discovery in synoptic survey imaging data
    Brink, Henrik
    Richards, Joseph W.
    Poznanski, Dovi
    Bloom, Joshua S.
    Rice, John
    Negahban, Sahand
    Wainwright, Martin
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 435 (02) : 1047 - 1060
  • [44] Transiting Exoplanet Discovery Using Machine Learning Techniques: A Survey
    Jara-Maldonado, Miguel
    Alarcon-Aquino, Vicente
    Rosas-Romero, Roberto
    Starostenko, Oleg
    Ramirez-Cortes, Juan Manuel
    EARTH SCIENCE INFORMATICS, 2020, 13 (03) : 573 - 600
  • [45] Diagnosis Of Carcinogenic Tumour Discovery Using Machine Learning Strategies
    Geetha, C.
    Perumal, S. Maruthu
    JOURNAL OF PHARMACEUTICAL NEGATIVE RESULTS, 2022, 13 : 998 - 1006
  • [46] Machine Learning in Drug Discovery
    Hochreiter, Sepp
    Klambauer, Guenter
    Rarey, Matthias
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2018, 58 (09) : 1723 - 1724
  • [48] Antibiotic discovery with machine learning
    de la Fuente-Nunez, Cesar
    NATURE BIOTECHNOLOGY, 2022, 40 (06) : 833 - 834
  • [49] Machine Learning in Drug Discovery
    Klambauer, Guenter
    Hochreiter, Sepp
    Rarey, Matthias
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (03) : 945 - 946
  • [50] Antibiotic discovery with machine learning
    Cesar de la Fuente-Nunez
    Nature Biotechnology, 2022, 40 : 833 - 834