Discovery of optimal silver nanowires synthesis conditions using machine learning

被引:1
|
作者
Du, Yuncheng [1 ]
Du, Dongping [2 ]
机构
[1] Univ Houston, Dept Biomed Engn, Houston, TX 77004 USA
[2] Texas Tech Univ, Dept Ind Mfg & Syst Engn, Lubbock, TX USA
基金
美国国家科学基金会;
关键词
Nanocrystalline materials; Machine learning; Random forest; Silver nanowires; Synthesis optimization;
D O I
10.1016/j.matlet.2024.137399
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Silver nanowires (AgNWs) are essential nanomaterials for diverse applications, including medical devices. Their morphology, like length and diameter, significantly affects conductivity, which is crucial for effective electrical signal transmission. Traditional trial-and-error approaches to adjust synthesis conditions for morphology control are time consuming. To overcome the limitation, this study integrates machine learning (ML) with experimental approaches to investigate how nucleants affect AgNWs synthesis. Random forest regression models are developed to analyze the effect of varying nucleant concentrations on morphology. Our approach builds a new framework to optimize synthesis conditions for morphology control, accelerating advancements in manufacturing capabilities.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Synthesis of silver nanowires in aqueous solutions
    Becker, Richard
    Soderlind, Fredrik
    Liedberg, Bo
    Kall, Per-Olov
    MATERIALS LETTERS, 2010, 64 (08) : 956 - 958
  • [32] Materials Discovery With Machine Learning and Knowledge Discovery
    Oliveira Jr, Osvaldo N.
    Oliveira, Maria Cristina F.
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [33] Optimal Pricing of Configurable Products using Machine Learning
    Hernandez, Angel C.
    Masaryk, David
    Mecir, Juraj
    Saliminejad, Siamak
    2024 11TH IEEE SWISS CONFERENCE ON DATA SCIENCE, SDS 2024, 2024, : 99 - 106
  • [34] Designing optimal behavioral experiments using machine learning
    Valentin, Simon
    Kleinegesse, Steven
    Bramley, Neil R.
    Series, Peggy
    Gutmann, Michael U.
    Lucas, Christopher G.
    ELIFE, 2024, 13
  • [35] Optimal Spatial Prediction Using Ensemble Machine Learning
    Davies, Molly Margaret
    van der Laan, Mark J.
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2016, 12 (01): : 179 - 201
  • [36] Using machine learning to improve ensemble docking for drug discovery
    Chandak, Tanay
    Mayginnes, John P.
    Mayes, Howard
    Wong, Chung F.
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2020, 88 (10) : 1263 - 1270
  • [38] Knowledge Discovery in Engineering Applications Using Machine Learning Techniques
    Kubik, Christian
    Molitor, Dirk Alexander
    Becker, Marco
    Groche, Peter
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2022, 144 (09):
  • [39] Transiting Exoplanet Discovery Using Machine Learning Techniques: A Survey
    Miguel Jara-Maldonado
    Vicente Alarcon-Aquino
    Roberto Rosas-Romero
    Oleg Starostenko
    Juan Manuel Ramirez-Cortes
    Earth Science Informatics, 2020, 13 : 573 - 600
  • [40] Invited: Drug Discovery Approaches using Quantum Machine Learning
    Li, Junde
    Alam, Mahabubul
    Sha, Congzhou M.
    Wang, Jian
    Dokholyan, Nikolay, V
    Ghosh, Swaroop
    2021 58TH ACM/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2021, : 1356 - 1359