Discovery of optimal silver nanowires synthesis conditions using machine learning

被引:1
|
作者
Du, Yuncheng [1 ]
Du, Dongping [2 ]
机构
[1] Univ Houston, Dept Biomed Engn, Houston, TX 77004 USA
[2] Texas Tech Univ, Dept Ind Mfg & Syst Engn, Lubbock, TX USA
基金
美国国家科学基金会;
关键词
Nanocrystalline materials; Machine learning; Random forest; Silver nanowires; Synthesis optimization;
D O I
10.1016/j.matlet.2024.137399
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Silver nanowires (AgNWs) are essential nanomaterials for diverse applications, including medical devices. Their morphology, like length and diameter, significantly affects conductivity, which is crucial for effective electrical signal transmission. Traditional trial-and-error approaches to adjust synthesis conditions for morphology control are time consuming. To overcome the limitation, this study integrates machine learning (ML) with experimental approaches to investigate how nucleants affect AgNWs synthesis. Random forest regression models are developed to analyze the effect of varying nucleant concentrations on morphology. Our approach builds a new framework to optimize synthesis conditions for morphology control, accelerating advancements in manufacturing capabilities.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Machine Learning Accelerates Discovery of Optimal Colloidal Quantum Dot Synthesis
    Voznyy, Oleksandr
    Levina, Larissa
    Fan, James Z.
    Askerka, Mikhail
    Jain, Ankit
    Choi, Min-Jae
    Ouellette, Olivier
    Todorovic, Petar
    Sagar, Laxmi K.
    Sargent, Edward H.
    ACS NANO, 2019, 13 (10) : 11122 - 11128
  • [2] Discovery of senolytics using machine learning
    Smer-Barreto, Vanessa
    Quintanilla, Andrea
    Elliott, Richard J. R.
    Dawson, John C.
    Sun, Jiugeng
    Campa, Victor M.
    Lorente-Macias, Alvaro
    Unciti-Broceta, Asier
    Carragher, Neil O.
    Acosta, Juan Carlos
    Oyarzun, Diego A.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [3] Discovery of senolytics using machine learning
    Vanessa Smer-Barreto
    Andrea Quintanilla
    Richard J. R. Elliott
    John C. Dawson
    Jiugeng Sun
    Víctor M. Campa
    Álvaro Lorente-Macías
    Asier Unciti-Broceta
    Neil O. Carragher
    Juan Carlos Acosta
    Diego A. Oyarzún
    Nature Communications, 14
  • [4] Optimization of microfluidic synthesis of silver nanoparticles: A generic approach using machine learning
    Nathanael, Konstantia
    Cheng, Sibo
    Kovalchuk, Nina M.
    Arcucci, Rossella
    Simmons, Mark J. H.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2023, 193 : 65 - 74
  • [5] Determination of the Optimal Conditions for Synthesis of Silver Oxalate Nanorods
    Pourmortazavi, Seied Mahdi
    Hajimirsadeghi, Seiedeh Somayyeh
    Kohsari, Iraj
    Alamdari, Reza Fareghi
    Rahimi-Nasrabadi, Mehdi
    CHEMICAL ENGINEERING & TECHNOLOGY, 2008, 31 (10) : 1532 - 1535
  • [6] Machine learning discovery of optimal quadrature rules for isogeometric analysis
    Teijeiro, Tomas
    Taylor, Jamie M.
    Hashemian, Ali
    Pardo, David
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 416
  • [7] Accelerating materials discovery using machine learning
    Yongfei Juan
    Yongbing Dai
    Yang Yang
    Jiao Zhang
    JournalofMaterialsScience&Technology, 2021, 79 (20) : 178 - 190
  • [8] Accelerating materials discovery using machine learning
    Juan, Yongfei
    Dai, Yongbing
    Yang, Yang
    Zhang, Jiao
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 79 : 178 - 190
  • [9] Materials discovery and design using machine learning
    Liu, Yue
    Zhao, Tianlu
    Ju, Wangwei
    Shi, Siqi
    JOURNAL OF MATERIOMICS, 2017, 3 (03) : 159 - 177
  • [10] Utilization of machine learning to accelerate colloidal synthesis and discovery
    Fong, Anthony Y.
    Pellouchoud, Lenson
    Davidson, Malcolm
    Walroth, Richard C.
    Church, Carena
    Tcareva, Ekaterina
    Wu, Liheng
    Peterson, Kyle
    Meredig, Bryce
    Tassone, Christopher J.
    JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (22):