共 50 条
Influence of photothermal nanomaterials localization within the electrospun membrane structure on purification of saline oily wastewater based on photothermal vacuum membrane distillation
被引:2
|作者:
Ghodsi, Ali
[1
]
Fashandi, Hossein
[1
]
机构:
[1] Isfahan Univ Technol, Dept Text Engn, Esfahan 8415683111, Iran
基金:
美国国家科学基金会;
关键词:
Electrospinning;
Poly(vinylidene fluoride) (PVDF) omniphobic;
membrane;
Photothermal vacuum membrane distillation;
(PVMD);
Light trapping;
Photothermal nanomaterials localization;
Graphene oxide (GO);
NANOFIBER MEMBRANE;
ULTRAFILTRATION;
NANOPARTICLES;
PERFORMANCE;
DESALINATION;
FABRICATION;
EMULSION;
D O I:
10.1016/j.jenvman.2024.121866
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Today, synergistic combination of special nanomaterials (NMs) and electrospinning technique has emerged as a promising strategy to address both water scarcity and energy concerns through the development of photothermal membranes for wastewater purification and desalination. This work was organized to provide a new perspective on membrane design for photothermal vacuum membrane distillation (PVMD) through optimizing membrane performance by varying the localization of photothermal NMs. Poly(vinylidene fluoride) omniphobic photothermal membranes were prepared by localizing graphene oxide nanosheets (GO NSh) (1) on the surface (0.2 wt %), (2) within the nanofibers structure (10 wt%) or (3) in both positions. Considering the case 1, after 7 min exposure to the 1 sun intensity light, the highest temperature ( 93.5 degrees C) was recorded, which is assigned to the accessibility of GO NSh upon light exposure. The case 3 yielded to a small reduction in surface temperature ( 90.4 degrees C) compared to the case 1, indicating no need to localize NMs within the nanofibers structure when they are localized on the surface. The other extreme belonged to the case 2 with the lowest temperature of 71.3 degrees C, which is consistent with the less accessibility of GO NSh during irradiation. It was demonstrated that the accessibility of photothermal NMs plays more pronounced role in the membrane surface temperature compared to the light trapping. However, benefiting from higher surface temperature during PVMD due to enhanced accessibility of photothermal NMs is balanced out by decrease in the permeate flux (case 1: 1.51 kg/m2 h and case 2: 1.83 kg/m2 h) due to blocking some membrane surface pores by the binder. A trend similar to that for flux was also followed by the efficiency. Additionally, no change in rejection was observed for different GO NSh localizations.
引用
收藏
页数:13
相关论文