Payload Parameters Identification Using Incremental Ensemble Learning

被引:1
作者
Taie, Wael [1 ,2 ]
ElGeneidy, Khaled [3 ]
Al-Yacoub, Ali [4 ]
Ronglei, Sun [5 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan, Peoples R China
[2] October Univ Modern Sci & Arts, Mech Syst Engn Dept, Cairo, Egypt
[3] Coventry Univ, Sch Engn, Cairo, Egypt
[4] Loughborough Univ, EPSRC Ctr Innovat Mfg Intelligent Automat, Loughborough, Leics, England
[5] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, State Key Lab Intelligent Mfg Equipment & Technol, Wuhan, Peoples R China
来源
2024 4TH INTERNATIONAL CONFERENCE ON COMPUTER, CONTROL AND ROBOTICS, ICCCR 2024 | 2024年
基金
中国国家自然科学基金;
关键词
payload dynamics; incremental learning; ensemble learning; parameters identification; ROBOT;
D O I
10.1109/ICCCR61138.2024.10585532
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a new method for identifying the payload inertial parameters for collaborative robots (cobots) that operate in dynamic manufacturing environments with frequent reconfiguration. The proposed method eliminates the need for specific excitation trajectories during the identification process, allowing the identification of payload parameters while the cobot follows any arbitrary task trajectory. This is achieved via an incremental ensemble model, which utilizes incremental neural networks as weak learners. The proposed method successfully adapts the ensemble model to new task paths while maintaining accurate estimations for the payload parameters. The mean absolute error for mass, center of mass, and the moment of inertia parameters were 0.01 kg, 0.0068 kg.m, and 0.0008 kg.m(2), respectively. These results demonstrate the effectiveness of the model in dealing with new task trajectories in comparison to traditional or batch ensemble models.
引用
收藏
页码:241 / 245
页数:5
相关论文
共 16 条
[1]  
Angel L., 2016, S IMAGE SIGNAL PROCE
[2]  
[Anonymous], The UR30 can lift heavy payloads while maintaining a compact footprint in a collaborative setting
[3]   Complete and Consistent Payload Identification During Human-Robot Collaboration: A Safety-Oriented Procedure [J].
Farsoni, Saverio ;
Bonfe, Marcello .
HUMAN-FRIENDLY ROBOTICS 2021, 2022, :15-28
[4]   Precision Motion Control of a 6-DoFs Industrial Robot With Accurate Payload Estimation [J].
Hu, Jinfei ;
Li, Chen ;
Chen, Zheng ;
Yao, Bin .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2020, 25 (04) :1821-1829
[5]  
Knudsen M., 2020, J. Intell. Syst. Theor. Appl, V3, P13, DOI [10.38016/jista.682479, DOI 10.38016/JISTA.682479]
[6]   On-Line Estimation of Inertial Parameters Using a Recursive Total Least-Squares Approach [J].
Kubus, Daniel ;
Kroeger, Torsten ;
Wahl, Friedrich M. .
2008 IEEE/RSJ INTERNATIONAL CONFERENCE ON ROBOTS AND INTELLIGENT SYSTEMS, VOLS 1-3, CONFERENCE PROCEEDINGS, 2008, :3845-3852
[7]  
Kubus D, 2007, 2007 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-9, P1408
[8]   Online Payload Identification for Tactile Robots Using the Momentum Observer [J].
Kurdas, Alexander ;
Hamad, Mazin ;
Vorndamme, Jonathan ;
Mansfeld, Nico ;
Abdolshah, Saeed ;
Haddadin, Sami .
2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022, :5953-5959
[9]   Inertial Parameter Identification in Robotics: A Survey [J].
Leboutet, Quentin ;
Roux, Julien ;
Janot, Alexandre ;
Guadarrama-Olvera, Julio Rogelio ;
Cheng, Gordon .
APPLIED SCIENCES-BASEL, 2021, 11 (09)
[10]  
lvarez D. D., 2022, The future of smart production for SMEs: a methodological and practical approach towards digitalization in SMEs, P363, DOI [10.1007/978-3-031-15428-733/FIGURES/2, DOI 10.1007/978-3-031-15428-733/FIGURES/2]