Energy variation rate synchronization for coupled chaotic systems

被引:10
作者
Yao, Zhao [1 ]
Sun, Kehui [1 ]
He, Shaobo [2 ]
机构
[1] Cent South Univ, Sch Phys, Changsha 410083, Peoples R China
[2] Xiangtan Univ, Sch Automat & Elect Informat, Xiangtan 411105, Peoples R China
关键词
Chaos synchronization; Synchronization principle; Energy variation rate; Field coupling; PROJECTIVE SYNCHRONIZATION;
D O I
10.1016/j.chaos.2024.114970
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There are currently two typical principles for chaotic synchronization, the Lyapunov stability principle and the conditional Lyapunov exponent criterion. We describe an alternate chaos synchronization principle using the time derivative of the energy function. The equal energy variation leads to synchronization between two chaotic systems. We elaborate the proposed mechanism in two chaotic synchronization cases, including synchronization of two simplified Lorenz systems and the field coupling synchronization of the chaotic FitzHugh-Nagumo neuronal systems. The theoretical proof and experimental results verify the correctness of the new synchronization mechanism, and it can be applied to synchronization of other chaotic systems.
引用
收藏
页数:7
相关论文
共 45 条
[1]   Double-zero degeneracy and heteroclinic cycles in a perturbation of the Lorenz system [J].
Algaba, A. ;
Dominguez-Moreno, M. C. ;
Merino, M. ;
Rodriguez-Luis, A. J. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 111
[2]   SYNCHRONIZATION OF CHAOTIC ORBITS - THE EFFECT OF A FINITE-TIME STEP [J].
AMRITKAR, RE ;
GUPTE, N .
PHYSICAL REVIEW E, 1993, 47 (06) :3889-3895
[3]   Noise-induced complex dynamics and synchronization in the map-based Chialvo neuron model [J].
Bashkirtseva, Irina ;
Ryashko, Lev ;
Used, Javier ;
Sanjuan, Miguel A. F. ;
Seoane, Jesus M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 116
[4]   Bistability in the synchronization of identical neurons [J].
Boaretto, B. R. R. ;
Budzinski, R. C. ;
Rossi, K. L. ;
Manchein, C. ;
Prado, T. L. ;
Feudel, U. ;
Lopes, S. R. .
PHYSICAL REVIEW E, 2021, 104 (02)
[5]   Synchronization in nonidentical extended systems [J].
Boccaletti, S ;
Bragard, J ;
Arecchi, FT ;
Mancini, H .
PHYSICAL REVIEW LETTERS, 1999, 83 (03) :536-539
[6]   Stabilization and destabilization of fractional oscillators via a delayed feedback control [J].
Cermak, Jan ;
Kisela, Tomas .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 117
[7]   Frequency Enhancement in Coupled Noisy Excitable Elements [J].
Chiang, Wei-Yin ;
Lai, Pik-Yin ;
Chan, C. K. .
PHYSICAL REVIEW LETTERS, 2011, 106 (25)
[8]   Nonsmooth dynamics in spiking neuron models [J].
Coombes, S. ;
Thul, R. ;
Wedgwood, K. C. A. .
PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (22) :2042-2057
[9]   Synchronous timing of abrupt climate changes during the last glacial period [J].
Corrick, Ellen C. ;
Drysdale, Russell N. ;
Hellstrom, John C. ;
Capron, Emilie ;
Rasmussen, Sune Olander ;
Zhang, Xu ;
Fleitmann, Dominik ;
Couchoud, Isabelle ;
Wolff, Eric .
SCIENCE, 2020, 369 (6506) :963-+
[10]   A hyperchaotic cycloid map with attractor topology sensitive to system parameters [J].
Dong, Chunyi ;
Sun, Kehui ;
He, Shaobo ;
Wang, Huihai .
CHAOS, 2021, 31 (08)