On the sum of the first two largest signless Laplacian eigenvalues of a graph

被引:2
|
作者
Zhou, Zi-Ming [1 ]
He, Chang-Xiang [1 ]
Shan, Hai-Ying [2 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, Shanghai, Peoples R China
[2] Tongji Univ, Sch Math Sci, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
(Signless) Laplacian matrix; (Signless) Laplacian eigenvalues; Sum of (signless) Laplacian eigenvalues;
D O I
10.1016/j.disc.2024.114035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph G, let S2(G) be the sum of the first two largest signless Laplacian eigenvalues of G, and f (G) = e(G) +3 -S2(G). Oliveira, Lima, Rama and Carvalho conjectured that K+1,n-1 (the star graph with an additional edge) is the unique graph with minimum value of f (G) on n vertices. In this paper, we prove this conjecture, which also confirm a conjecture for the upper bound of S2(G) proposed by Ashraf et al. (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Bounding the sum of the largest signless Laplacian eigenvalues of a graph
    Abiad, Aida
    de Lima, Leonardo
    Kalantarzadeh, Sina
    Mohammadi, Mona
    Oliveira, Carla
    DISCRETE APPLIED MATHEMATICS, 2023, 340 : 315 - 326
  • [2] The sum of the first two largest signless laplacian eigenvalues of trees and unicyclic graphs
    Du, Zhibin
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2019, 35 : 449 - 467
  • [3] On the sum of signless Laplacian eigenvalues of a graph
    Ashraf, F.
    Omidi, G. R.
    Tayfeh-Rezaie, B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (11) : 4539 - 4546
  • [4] On Zagreb index, signless Laplacian eigenvalues and signless Laplacian energy of a graph
    Pirzada, S.
    Khan, Saleem
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (04):
  • [5] On Zagreb index, signless Laplacian eigenvalues and signless Laplacian energy of a graph
    S. Pirzada
    Saleem Khan
    Computational and Applied Mathematics, 2023, 42
  • [6] Note on a conjecture for the sum of signless Laplacian eigenvalues
    Xiaodan Chen
    Guoliang Hao
    Dequan Jin
    Jingjian Li
    Czechoslovak Mathematical Journal, 2018, 68 : 601 - 610
  • [7] ON SUM OF POWERS OF THE SIGNLESS LAPLACIAN EIGENVALUES OF GRAPHS
    Liu, Muhuo
    Liu, Bolian
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2012, 41 (04): : 527 - 536
  • [8] Note on a conjecture for the sum of signless Laplacian eigenvalues
    Chen, Xiaodan
    Hao, Guoliang
    Jin, Dequan
    Li, Jingjian
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2018, 68 (03) : 601 - 610
  • [9] Notes on the sum of powers of the signless Laplacian eigenvalues of graphs
    You, Lihua
    Yang, Jieshan
    ARS COMBINATORIA, 2014, 117 : 85 - 94
  • [10] A characterization of strongly regular graphs in terms of the largest signless Laplacian eigenvalues
    Fan, Feng-lei
    Weng, Chih-wen
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 506 : 1 - 5