Dual-Curriculum Contrastive Multi-Instance Learning for Cancer Prognosis Analysis with Whole Slide Images

被引:0
作者
Tu, Chao [1 ,2 ,3 ]
Zhang, Yu [1 ,2 ,3 ]
Ning, Zhenyuan [1 ,2 ,3 ]
机构
[1] Southern Med Univ, Sch Biomed Engn, Guangzhou 510515, Peoples R China
[2] Southern Med Univ, Guangdong Prov Key Lab Med Image Proc, Guangzhou 510515, Peoples R China
[3] Southern Med Univ, Guangdong Prov Engn Lab Med Imaging & Diag Techno, Guangzhou 510515, Peoples R China
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022) | 2022年
基金
中国国家自然科学基金;
关键词
PREDICTION; SURVIVAL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The multi-instance learning (MIL) has advanced cancer prognosis analysis with whole slide images (WSIs). However, current MIL methods for WSI analysis still confront unique challenges. Previous methods typically generate instance representations via a pre-trained model or a model trained by the instances with bag-level annotations, which, however, may not generalize well to the downstream task due to the introduction of excessive label noises and the lack of fine-grained information across multi-magnification WSIs. Additionally, existing methods generally aggregate instance representations as bag ones for prognosis prediction and have no consideration of intra-bag redundancy and inter-bag discrimination. To address these issues, we propose a dual-curriculum contrastive MIL method for cancer prognosis analysis with WSIs. The proposed method consists of two curriculums, i.e., saliency-guided weakly-supervised instance encoding with cross-scale tiles and contrastive-enhanced soft-bag prognosis inference. Extensive experiments on three public datasets demonstrate that our method outperforms state-of-the-art methods in this field. The code is available at https://github.com/YuZhang-SMU/Cancer-Prognosis-Analysis/tree/main/DC_MIL%20Code.
引用
收藏
页数:14
相关论文
共 47 条
[1]   Deep learning based tissue analysis predicts outcome in colorectal cancer [J].
Bychkov, Dmitrii ;
Linder, Nina ;
Turkki, Riku ;
Nordling, Stig ;
Kovanen, Panu E. ;
Verrill, Clare ;
Walliander, Margarita ;
Lundin, Mikael ;
Haglund, Caj ;
Lundin, Johan .
SCIENTIFIC REPORTS, 2018, 8
[2]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[3]   Whole Slide Images are 2D Point Clouds: Context-Aware Survival Prediction Using Patch-Based Graph Convolutional Networks [J].
Chen, Richard J. ;
Lu, Ming Y. ;
Shaban, Muhammad ;
Chen, Chengkuan ;
Chen, Tiffany Y. ;
Williamson, Drew F. K. ;
Mahmood, Faisal .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT VIII, 2021, 12908 :339-349
[4]  
Chen RJ, 2022, IEEE T MED IMAGING, V41, P757, DOI [10.1109/TMI.2020.3021387, 10.1109/TITS.2020.3030218]
[5]   Artificial intelligence in digital pathology: a roadmap to routine use in clinical practice [J].
Colling, Richard ;
Pitman, Helen ;
Oien, Karin ;
Rajpoot, Nasir ;
Macklin, Philip ;
Snead, David ;
Sackville, Tony ;
Verrill, Clare ;
Bachtiar, Velicia ;
Booth, Richard ;
Bryant, Alyson ;
Bull, Joshua ;
Bury, Jonathan ;
Carragher, Fiona ;
Collins, Graeme ;
Craig, Clare ;
da Silva, Maria Freitas ;
Gosling, Daniel ;
Jacobs, Jaco ;
Kajland-Wilen, Lena ;
Karlin, Johanna ;
Lawler, Darragh ;
Lee, Stephen ;
Miller, Keith ;
Mozolowski, Guy ;
Nicholson, Richard ;
O'Connor, Daniel ;
Rahbek, Mikkel ;
Sumner, Alan ;
Vossen, Dirk ;
White, Kieron ;
Wing, Charlotte ;
Wright, Corrina .
JOURNAL OF PATHOLOGY, 2019, 249 (02) :143-150
[6]   Deep learning-based classification of mesothelioma improves prediction of patient outcome [J].
Courtiol, Pierre ;
Maussion, Charles ;
Moarii, Matahi ;
Pronier, Elodie ;
Pilcer, Samuel ;
Sefta, Meriem ;
Manceron, Pierre ;
Toldo, Sylvain ;
Zaslavskiy, Mikhail ;
Le Stang, Nolwenn ;
Girard, Nicolas ;
Elemento, Olivier ;
Nicholson, Andrew G. ;
Blay, Jean-Yves ;
Galateau-Salle, Francoise ;
Wainrib, Gilles ;
Clozel, Thomas .
NATURE MEDICINE, 2019, 25 (10) :1519-+
[7]  
Courtiol Pierre, 2018, ARXIV180202212
[8]  
Fan XM, 2017, IN C IND ENG ENG MAN, P2341, DOI 10.1109/IEEM.2017.8290310
[9]  
Fox J., 2002, An R na S-Plus companion to apllied regression
[10]   Multi-scale Domain-adversarial Multiple-instance CNN for Cancer Subtype Classification with Unannotated Histopathological Images [J].
Hashimoto, Noriaki ;
Fukushima, Daisuke ;
Koga, Ryoichi ;
Takagi, Yusuke ;
Ko, Kaho ;
Kohno, Kei ;
Nakaguro, Masato ;
Nakamura, Shigeo ;
Hontani, Hidekata ;
Takeuchi, Ichiro .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :3851-3860