Crank-Nicolson FDTD Method in Media Described by Time-Fractional Constitutive Relations

被引:0
|
作者
Trofimowicz, Damian [1 ]
Stefanski, Tomasz P. [1 ]
Gulgowskit, Jacek [2 ]
机构
[1] Gdansk Univ Technol, Fac Elect Telecommun & Informat, Gdansk, Poland
[2] Univ Gdansk, Fac Math Phys & Informat, Gdansk, Poland
来源
2024 18TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, EUCAP | 2024年
关键词
finite-difference time-domain; Crank-Nicolson method; fractional calculus; Grunwald-Letnikov derivative; computational electromagnetics; MAXWELLS EQUATIONS; DOMAIN METHOD;
D O I
10.23919/eucap60739.2024.10501157
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this contribution, we present the Crank-Nicolson finite-difference time-domain (CN-FDTD) method, implemented for simulations of wave propagation in media described by time-fractional (TF) constitutive relations. That is, the considered constitutive relations involve fractional-order (FO) derivatives based on the Grunwald-Letnikov definition, allowing for description of hereditary properties and memory effects of media and processes. Therefore, the TF constitutive relations make it possible to include, in a dielectric response, diffusion processes which are modelled mathematically by the diffusion-wave equation. We formulate fundamental equations of the proposed CN-FDTD method, and then we execute simulations which confirm its accuracy and applicability. Additionally, we perform numerical tests of stability, which confirm unconditional stability of the method. The proposed method is useful for researchers investigating numerical techniques in media described by FO derivatives.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] IN DEFENSE OF CRANK-NICOLSON METHOD
    WILKES, JO
    AICHE JOURNAL, 1970, 16 (03) : 501 - &
  • [22] Crank-Nicolson WSGI difference scheme with finite element method for multi-dimensional time-fractional wave problem
    Cao, Yue
    Yin, Baoli
    Liu, Yang
    Li, Hong
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04): : 5126 - 5145
  • [23] Revisiting the stability of crank-nicolson and ADI-FDTD
    Garcia, Salvador G.
    Rubio, R. Godoy
    Bretones, A. Rubio
    Lopez, R. Gomez
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2007, 55 (11) : 3199 - 3203
  • [24] A novel and efficient subgridding scheme in fdtd method using the Crank-Nicolson algorithm
    Lin, Ting-Chun
    Kuo, Chih-Wen
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2007, 49 (12) : 3103 - 3106
  • [25] ALTERNATING BAND CRANK-NICOLSON METHOD FOR
    陈劲
    张宝琳
    Applied Mathematics:A Journal of Chinese Universities, 1993, (02) : 150 - 162
  • [26] Provably Stable Local Application of Crank-Nicolson Time Integration to the FDTD Method with Nonuniform Gridding and Subgridding
    Van Londersele, A.
    De Zutter, D.
    Vande Ginste, D.
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2018, 33 (10): : 1068 - 1069
  • [27] Provably Stable Local Application of Crank-Nicolson Time Integration to the FDTD Method with Nonuniform Gridding and Subgridding
    Van Londersele, A.
    De Zutter, D.
    Vande Ginste, D.
    2018 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM (ACES), 2018,
  • [28] An analysis of the Crank-Nicolson method for subdiffusion
    Jin, Bangti
    Li, Buyang
    Zhou, Zhi
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (01) : 518 - 541
  • [29] 分析周期结构的Crank-Nicolson FDTD方法
    郑奎松
    葛德彪
    魏兵
    系统工程与电子技术, 2005, (08) : 1332 - 1335
  • [30] Crank-Nicolson reformulation of ADI-FDTD PML extensions
    Rubio, R. Godoy
    Garcia, Salvador G.
    Bretones, A. Rubio
    Martin, R. Gomez
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2006, 5 (01): : 357 - 360