Matrix-valued modified logarithmic Sobolev inequality for sub-Laplacian on SU (2)

被引:0
作者
Gao, Li [1 ]
Gordina, Maria [2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan, Hubei, Peoples R China
[2] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
关键词
Logarithmic Sobolev inequality; Sub-Laplacians; SU (2); Quantum Markov semigroup; CURVATURE-DIMENSION INEQUALITIES; HEAT KERNEL INEQUALITIES; HYPERCONTRACTIVITY; SEMIGROUPS; GRADIENT; GENERATORS; BOUNDS;
D O I
10.1016/j.jfa.2024.110453
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the canonical sub -Laplacian on SU (2) admits a modified log-Sobolev inequality on matrix -valued functions, independent of the matrix sizes. This establishes the first example of a matrix -valued modified log-Sobolev inequality for a sub -Laplacian. We also show that on Lie groups the heat kernel measure p t at time t satisfies matrix -valued modified log-Sobolev inequality with constants in order O ( t - 1 ). (c) 2024 Published by Elsevier Inc.
引用
收藏
页数:33
相关论文
共 51 条