We prove that the canonical sub -Laplacian on SU (2) admits a modified log-Sobolev inequality on matrix -valued functions, independent of the matrix sizes. This establishes the first example of a matrix -valued modified log-Sobolev inequality for a sub -Laplacian. We also show that on Lie groups the heat kernel measure p t at time t satisfies matrix -valued modified log-Sobolev inequality with constants in order O ( t - 1 ). (c) 2024 Published by Elsevier Inc.
机构:
Inst Res Fundamental Sci IPM, Sch Math, Tehran, IranInst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
Beigi, Salman
Datta, Nilanjana
论文数: 0引用数: 0
h-index: 0
机构:
Dept Appl Math & Theoret Phys, Cambridge, England
Univ Cambridge, Stat Lab, Ctr Math Sci, Cambridge, EnglandInst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
Datta, Nilanjana
Rouze, Cambyse
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cambridge, Stat Lab, Ctr Math Sci, Cambridge, EnglandInst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
机构:
Inst Res Fundamental Sci IPM, Sch Math, Tehran, IranInst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
Beigi, Salman
Datta, Nilanjana
论文数: 0引用数: 0
h-index: 0
机构:
Dept Appl Math & Theoret Phys, Cambridge, England
Univ Cambridge, Stat Lab, Ctr Math Sci, Cambridge, EnglandInst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
Datta, Nilanjana
Rouze, Cambyse
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cambridge, Stat Lab, Ctr Math Sci, Cambridge, EnglandInst Res Fundamental Sci IPM, Sch Math, Tehran, Iran