Matrix-valued modified logarithmic Sobolev inequality for sub-Laplacian on SU (2)

被引:0
作者
Gao, Li [1 ]
Gordina, Maria [2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan, Hubei, Peoples R China
[2] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
关键词
Logarithmic Sobolev inequality; Sub-Laplacians; SU (2); Quantum Markov semigroup; CURVATURE-DIMENSION INEQUALITIES; HEAT KERNEL INEQUALITIES; HYPERCONTRACTIVITY; SEMIGROUPS; GRADIENT; GENERATORS; BOUNDS;
D O I
10.1016/j.jfa.2024.110453
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the canonical sub -Laplacian on SU (2) admits a modified log-Sobolev inequality on matrix -valued functions, independent of the matrix sizes. This establishes the first example of a matrix -valued modified log-Sobolev inequality for a sub -Laplacian. We also show that on Lie groups the heat kernel measure p t at time t satisfies matrix -valued modified log-Sobolev inequality with constants in order O ( t - 1 ). (c) 2024 Published by Elsevier Inc.
引用
收藏
页数:33
相关论文
共 51 条
  • [1] Analysis and geometry of Markov diffusion operators
    Applebaum, David
    [J]. MATHEMATICAL GAZETTE, 2016, 100 (548) : 372 - +
  • [2] Bakry D., 1985, SEMINAIRE PROBABILIT, V1123, P177, DOI 10.1007/BFb0075847
  • [3] On gradient bounds for the heat kernel on the Heisenberg group
    Bakry, Dominique
    Baudoin, Fabrice
    Bonnefont, Michel
    Chafai, Djalil
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (08) : 1905 - 1938
  • [4] Entropy Decay for Davies Semigroups of a One Dimensional Quantum Lattice
    Bardet, Ivan
    Capel, Angela
    Gao, Li
    Lucia, Angelo
    Perez-Garcia, David
    Rouze, Cambyse
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (02)
  • [5] Transverse Weitzenbock formulas and curvature dimension inequalities on Riemannian foliations with totally geodesic leaves
    Baudoin, Fabrice
    Kim, Bumsik
    Wang, Jing
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2016, 24 (05) : 913 - 937
  • [6] Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries
    Baudoin, Fabrice
    Garofalo, Nicola
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (01) : 151 - 219
  • [7] A sub-Riemannian curvature-dimension inequality, volume doubling property and the Poincare inequality
    Baudoin, Fabrice
    Bonnefont, Michel
    Garofalo, Nicola
    [J]. MATHEMATISCHE ANNALEN, 2014, 358 (3-4) : 833 - 860
  • [8] The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds
    Baudoin, Fabrice
    Bonnefont, Michel
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2009, 263 (03) : 647 - 672
  • [9] Quantum Reverse Hypercontractivity: Its Tensorization and Application to Strong Converses
    Beigi, Salman
    Datta, Nilanjana
    Rouze, Cambyse
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 376 (02) : 753 - 794
  • [10] Complete Logarithmic Sobolev inequality via Ricci curvature bounded below II
    Brannan, Michael
    Gao, Li
    Junge, Marius
    [J]. JOURNAL OF TOPOLOGY AND ANALYSIS, 2023, 15 (03) : 741 - 794