X-ray Diffraction Study of Metallized Polyethylene for Creating Heat Storage Systems

被引:1
作者
Moravskyi, Volodymyr [1 ]
Kucherenko, Anastasiia [1 ]
Kuznetsova, Marta [2 ]
Dulebova, Ludmila [3 ]
Spisak, Emil [3 ]
机构
[1] Lviv Polytech Natl Univ, Dept Chem Technol Plast Proc, 12 St Bandera Str, UA-79013 Lvov, Ukraine
[2] Lviv Polytech Natl Univ, Dept Heat Engn & Thermal & Nucl Power Plants, 12 St Bandera Str, UA-79013 Lvov, Ukraine
[3] Tech Univ Kosice, Fac Mech Engn, Dept Technol Mat & Comp Aided Prod, 74 Masiarska, Kosice 04001, Slovakia
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 10期
关键词
polyethylene; metallization; diffraction pattern; WAXSFIT; degree of crystallinity; PHASE-CHANGE MATERIALS; SUGAR ALCOHOLS; ENERGY; FIN; OPTIMIZATION; TEMPERATURE; PERFORMANCE; COMPOSITES; CURVES; ANGLE;
D O I
10.3390/app14104183
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The paper analyzes the prospects of using a heat-accumulating material consisting of metallized polyethylene granules. X-ray diffraction analysis has been used to study the influence of the number of heating and cooling cycles of the heat-accumulating material on the change in the degree of crystallinity of polyethylene. It was shown that the proposed heat-accumulating material showed a low resistance and a significant decrease in the degree of crystallinity of polyethylene under the experimental conditions. The crystal structure of polyethylene did not change during cyclic heating and cooling. Grounded on the obtained experimental results, it was determined that a high degree of polyethylene crystallinity is being kept for 200-300 heating-cooling cycles.
引用
收藏
页数:13
相关论文
共 38 条
[1]  
[Anonymous], 2020, WAXSFITAnalysis of X-RAY Diffraction Curves
[2]   Preparation and properties of shape-stabilized phase change materials based on fatty acid eutectics and cellulose composites for thermal energy storage [J].
Cao, Lei ;
Tang, Yaojie ;
Fang, Guiyin .
ENERGY, 2015, 80 :98-103
[3]   Controlling the melting and solidification points temperature of PCMs on the performance and economic return of the water-cooled photovoltaic thermal system [J].
Chaichan, Miqdam T. ;
Kazem, Hussein A. ;
Al-Waeli, Ali H. A. ;
Sopian, K. .
SOLAR ENERGY, 2021, 224 :1344-1357
[4]   Numerical analysis of borehole heat exchanger using a single shape-stabilized phase change material in heating and cooling seasons [J].
Deng, Zhenpeng ;
Nian, Yongle ;
Liu, Qun ;
Cheng, Wen -long .
JOURNAL OF ENERGY STORAGE, 2023, 70
[5]   Heat transfer enhancement of a multichannel flat tube-copper foam latent heat storage unit [J].
Diao, Yanhua ;
Wang, Zhen ;
Zhao, Yaohua ;
Wang, Zeyu ;
Chen, Chuanqi ;
Zhang, Dengke .
APPLIED THERMAL ENGINEERING, 2023, 229
[6]   Crystal growth kinetics of sugar alcohols as phase change materials for thermal energy storage [J].
Duquesne, M. ;
Godin, A. ;
del Barrio, E. Palomo ;
Achchaq, F. .
MATERIALS & ENERGY I (2015) / MATERIALS & ENERGY II (2016), 2017, 139 :315-321
[7]  
Kucherenko Anastasiia, 2021, 2021 IEEE 11th International Conference Nanomaterials: Applications & Properties (NAP), DOI 10.1109/NAP51885.2021.9568393
[8]  
Kucherenko A., 2021, Chem. Technol. Appl. Subst, V4, P191, DOI [10.23939/ctas2021.01.191, DOI 10.23939/CTAS2021.01.191]
[9]   Magnesium oxychloride cement-based composites for latent heat storage: The effect of the introduction of multi-walled carbon nanotubes [J].
Lauermannova, Anna -Marie ;
Lojka, Michal ;
Zaleska, Martina ;
Pavlikova, Milena ;
Pivak, Adam ;
Pavlik, Zbysek ;
Ruzicka, Kvetoslav ;
Jankovsky, Ondrej .
JOURNAL OF BUILDING ENGINEERING, 2023, 72
[10]   Mitigation of lithium-ion battery thermal runaway and inhibition of thermal runaway propagation using inorganic salt hydrate with integrated latent heat and thermochemical storage [J].
Lin, Shao ;
Ling, Ziye ;
Li, Suimin ;
Cai, Chuyue ;
Zhang, Zhengguo ;
Fang, Xiaoming .
ENERGY, 2023, 266