Imagery Time Series Cloud Removal and Classification Using Long Short Term Memory Neural Networks

被引:0
|
作者
Alonso-Sarria, Francisco [1 ]
Valdivieso-Ros, Carmen [1 ]
Gomariz-Castillo, Francisco [1 ]
机构
[1] Univ Murcia, Inst Univ Agua & Medio Ambiente, Murcia 30100, Spain
关键词
Sentinel-2; cloud removal; LSTM; REMOTE-SENSING IMAGES; LAND-COVER; FOREST; FUSION; MODIS; TRANSFORMATION; DYNAMICS; SUPPORT; SYSTEM; SHADOW;
D O I
10.3390/rs16122150
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The availability of high spatial and temporal resolution imagery, such as that provided by the Sentinel satellites, allows the use of image time series to classify land cover. Recurrent neural networks (RNNs) are a clear candidate for such an approach; however, the presence of clouds poses a difficulty. In this paper, random forest (RF) and RNNs are used to reconstruct cloud-covered pixels using data from other next in time images instead of pixels in the same image. Additionally, two RNN architectures are tested to classify land cover from the series, treating reflectivities as time series and also treating spectral signatures as time series. The results are compared with an RF classification. The results for cloud removal show a high accuracy with a maximum RMSE of 0.057 for RNN and 0.038 for RF over all images and bands analysed. In terms of classification, the RNN model obtained higher accuracy (over 0.92 in the test data for the best hyperparameter combinations) than the RF model (0.905). However, the temporal-spectral model accuracies did not reach 0.9 in any case.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Time Series Forecasting Using a Hybrid Prophet and Long Short-Term Memory Model
    Kong, Yih Hern
    Lim, Khai Yin
    Chin, Wan Yoke
    SOFT COMPUTING IN DATA SCIENCE, SCDS 2021, 2021, 1489 : 183 - 196
  • [32] Subclinical tremor differentiation using long short-term memory networks
    Nanayakkara, Gerard Ruchin Randil
    Chan, Ping Yi
    PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2025,
  • [33] Using long short-term memory networks for river flow prediction
    Xu, Wei
    Jiang, Yanan
    Zhang, Xiaoli
    Li, Yi
    Zhang, Run
    Fu, Guangtao
    HYDROLOGY RESEARCH, 2020, 51 (06): : 1358 - 1376
  • [34] 5G RAN service classification using Long Short Term Memory Neural Network
    Khadmaoui-Bichouna, Mohamed
    Alcaraz-Calero, Jose M.
    Wang, Qi
    20TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE, IWCMC 2024, 2024, : 467 - 472
  • [35] Conditioning and time representation in long short-term memory networks
    Rivest, Francois
    Kalaska, John F.
    Bengio, Yoshua
    BIOLOGICAL CYBERNETICS, 2014, 108 (01) : 23 - 48
  • [36] Modeling plasticity during epileptogenesis by long short term memory neural networks
    Shahpari, Marzieh
    Hajji, Morteza
    Mirnajafi-Zadeh, Javad
    Setoodeh, Peyman
    COGNITIVE NEURODYNAMICS, 2022, 16 (02) : 401 - 409
  • [37] Efficient Neural Architecture Search for Long Short-Term Memory Networks
    Abed, Hamdi
    Gyires-Toth, Balint
    2021 IEEE 19TH WORLD SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS (SAMI 2021), 2021, : 287 - 292
  • [38] Modeling plasticity during epileptogenesis by long short term memory neural networks
    Marzieh Shahpari
    Morteza Hajji
    Javad Mirnajafi-Zadeh
    Peyman Setoodeh
    Cognitive Neurodynamics, 2022, 16 : 401 - 409
  • [39] Malware Classification using Long Short-term Memory Models
    Dang, Dennis
    Di Troia, Fabio
    Stamp, Mark
    ICISSP: PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY, 2021, : 743 - 752
  • [40] Lower Limb Kinematics Trajectory Prediction Using Long Short-Term Memory Neural Networks
    Zaroug, Abdelrahman
    Lei, Daniel T. H.
    Mudie, Kurt
    Begg, Rezaul
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8 (08):