Imagery Time Series Cloud Removal and Classification Using Long Short Term Memory Neural Networks

被引:1
作者
Alonso-Sarria, Francisco [1 ]
Valdivieso-Ros, Carmen [1 ]
Gomariz-Castillo, Francisco [1 ]
机构
[1] Univ Murcia, Inst Univ Agua & Medio Ambiente, Murcia 30100, Spain
关键词
Sentinel-2; cloud removal; LSTM; REMOTE-SENSING IMAGES; LAND-COVER; FOREST; FUSION; MODIS; TRANSFORMATION; DYNAMICS; SUPPORT; SYSTEM; SHADOW;
D O I
10.3390/rs16122150
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The availability of high spatial and temporal resolution imagery, such as that provided by the Sentinel satellites, allows the use of image time series to classify land cover. Recurrent neural networks (RNNs) are a clear candidate for such an approach; however, the presence of clouds poses a difficulty. In this paper, random forest (RF) and RNNs are used to reconstruct cloud-covered pixels using data from other next in time images instead of pixels in the same image. Additionally, two RNN architectures are tested to classify land cover from the series, treating reflectivities as time series and also treating spectral signatures as time series. The results are compared with an RF classification. The results for cloud removal show a high accuracy with a maximum RMSE of 0.057 for RNN and 0.038 for RF over all images and bands analysed. In terms of classification, the RNN model obtained higher accuracy (over 0.92 in the test data for the best hyperparameter combinations) than the RF model (0.905). However, the temporal-spectral model accuracies did not reach 0.9 in any case.
引用
收藏
页数:25
相关论文
共 100 条
[1]   Crop mapping using supervised machine learning and deep learning: a systematic literature review [J].
Alami Machichi, Mouad ;
Mansouri, Loubna El ;
Imani, Yasmina ;
Bourja, Omar ;
Lahlou, Ouiam ;
Zennayi, Yahya ;
Bourzeix, Francois ;
Hanade Houmma, Ismaguil ;
Hadria, Rachid .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (08) :2717-2753
[2]   Isolation Forests to Evaluate Class Separability and the Representativeness of Training and Validation Areas in Land Cover Classification [J].
Alonso-Sarria, Francisco ;
Valdivieso-Ros, Carmen ;
Gomariz-Castillo, Francisco .
REMOTE SENSING, 2019, 11 (24)
[3]  
Andrew ME, 2014, PROG PHYS GEOG, V38, P328, DOI 10.1177/0309133314528942
[4]  
[Anonymous], 2018, Official Journal of the European Union, V61, P1
[5]   The European Earth monitoring (GMES) programme: Status and perspectives [J].
Aschbacher, Josef ;
Milagro-Perez, Maria Pilar .
REMOTE SENSING OF ENVIRONMENT, 2012, 120 :3-8
[6]  
Avolio C, 2019, INT GEOSCI REMOTE SE, P9807, DOI [10.1109/IGARSS.2019.8900467, 10.1109/igarss.2019.8900467]
[7]   Texture classification of Mediterranean land cover [J].
Berberoglu, S. ;
Curran, P. J. ;
Lloyd, C. D. ;
Atkinson, P. M. .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2007, 9 (03) :322-334
[8]   ESA's sentinel missions in support of Earth system science [J].
Berger, Michael ;
Moreno, Jose ;
Johannessen, Johnny A. ;
Levelt, Pieternel F. ;
Hanssen, Ramon F. .
REMOTE SENSING OF ENVIRONMENT, 2012, 120 :84-90
[9]   Understanding deep learning in land use classification based on Sentinel-2 time series [J].
Campos-Taberner, Manuel ;
Javier Garcia-Haro, Francisco ;
Martinez, Beatriz ;
Izquierdo-Verdiguier, Emma ;
Atzberger, Clement ;
Camps-Valls, Gustau ;
Amparo Gilabert, Maria .
SCIENTIFIC REPORTS, 2020, 10 (01)
[10]   Processing of Extremely High-Resolution LiDAR and RGB Data: Outcome of the 2015 IEEE GRSS Data Fusion Contest-Part A: 2-D Contest [J].
Campos-Taberner, Manuel ;
Romero-Soriano, Adriana ;
Gatta, Carlo ;
Camps-Valls, Gustau ;
Lagrange, Adrien ;
Le Saux, Bertrand ;
Beaupere, Anne ;
Boulch, Alexandre ;
Chan-Hon-Tong, Adrien ;
Herbin, Stephane ;
Randrianarivo, Hicham ;
Ferecatu, Marin ;
Shimoni, Michal ;
Moser, Gabriele ;
Tuia, Devis .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (12) :5547-5559