Performance Evaluation of Vanilla, Residual, and Dense 2D U-Net Architectures for Skull Stripping of Augmented 3D T1-Weighted MRI Head Scans

被引:0
作者
Pimpalkar, Anway S. [1 ]
Patole, Rashmika K. [1 ]
Kamble, Ketaki D. [1 ]
Shindikar, Mahesh H. [1 ]
机构
[1] COEP Technol Univ, Pune 411005, MH, India
来源
BIOMEDICAL ENGINEERING SCIENCE AND TECHNOLOGY, ICBEST 2023 | 2024年 / 2003卷
关键词
Skull Stripping; MRI; Brain Segmentation; Semantic Segmentation; Deep Learning; U-Net; BRAIN EXTRACTION; AUTOMATIC DETECTION; BIRTH;
D O I
10.1007/978-3-031-54547-4_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Skull Stripping is a requisite preliminary step in most diagnostic neuroimaging applications. Manual Skull Stripping methods define the gold standard for the domain but are time-consuming and challenging to integrate into processing pipelines with a high number of data samples. Automated methods are an active area of research for head MRI segmentation, especially deep learning methods such as U-Net architecture implementations. This study compares Vanilla, Residual, and Dense 2D U-Net architectures for Skull Stripping. The Dense 2D U-Net architecture outperforms the Vanilla and Residual counterparts by achieving an accuracy of 99.75% on a test dataset. It is observed that dense interconnections in a U-Net encourage feature reuse across layers of the architecture and allow for shallower models with the strengths of a deeper network.
引用
收藏
页码:131 / 142
页数:12
相关论文
共 41 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Voxel-based morphometry - The methods [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2000, 11 (06) :805-821
[3]  
Baba Y., 2005, T1 Weighted Image
[4]   How does it work? Magnetic resonance imaging [J].
Berger, A .
BRITISH MEDICAL JOURNAL, 2002, 324 (7328) :35-35
[5]   AUTOMATIC DETECTION OF BRAIN CONTOURS IN MRI DATA SETS [J].
BRUMMER, ME ;
MERSEREAU, RM ;
EISNER, RL ;
LEWINE, RRJ .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1993, 12 (02) :153-166
[6]   Standardization of brain MR images across machines and protocols: bridging the gap for MRI-based radiomics [J].
Carre, Alexandre ;
Klausner, Guillaume ;
Edjlali, Myriam ;
Lerousseau, Marvin ;
Briend-Diop, Jade ;
Sun, Roger ;
Ammari, Samy ;
Reuze, Sylvain ;
Andres, Emilie Alvarez ;
Estienne, Theo ;
Niyoteka, Stephane ;
Battistella, Enzo ;
Vakalopoulou, Maria ;
Dhermain, Frederic ;
Paragios, Nikos ;
Deutsch, Eric ;
Oppenheim, Catherine ;
Pallud, Johan ;
Robert, Charlotte .
SCIENTIFIC REPORTS, 2020, 10 (01)
[7]   VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images [J].
Chen, Hao ;
Dou, Qi ;
Yu, Lequan ;
Qin, Jing ;
Heng, Pheng-Ann .
NEUROIMAGE, 2018, 170 :446-455
[8]  
Chollet, 2015, KERAS
[9]   Learning Spatiotemporal Features with 3D Convolutional Networks [J].
Du Tran ;
Bourdev, Lubomir ;
Fergus, Rob ;
Torresani, Lorenzo ;
Paluri, Manohar .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :4489-4497
[10]  
Dubey R., 2009, INDIAN J SCI TECHNOL, V2, P26, DOI 10.17485/ijst/2009/v2i9.10