A Stable High-Performance Zn-Ion Batteries Enabled by Highly Compatible Polar Co-Solvent

被引:1
作者
Yang, Shuo [1 ,2 ]
Wu, Guangpeng [1 ]
Zhang, Jing [1 ]
Guo, Yuning [1 ]
Xue, Kui [1 ]
Zhang, Yongqi [2 ]
Zhu, Yuanmin [3 ,4 ]
Li, Tao [5 ]
Zhang, Xiaofeng [1 ]
Zhou, Liujiang [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Phys, State Key Lab Elect Thin Films & Integrated Device, Chengdu 611731, Peoples R China
[2] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 611731, Peoples R China
[3] Dongguan Univ Technol, Res Inst Interdisciplinary Sci, Dongguan 523808, Peoples R China
[4] Dongguan Univ Technol, Sch Mat Sci & Engn, Dongguan 523808, Peoples R China
[5] Chinese Acad Sci, Inst Mat & Phys, Ganjiang Innovat Acad, Ganzhou 341119, Peoples R China
基金
中国国家自然科学基金;
关键词
dissolution; highly compatible; low-temperature; phase transition; polar-solvents; solvation structure optimization; trifluoroethanol; Zn dendrites; ELECTROLYTE; ORIENTATION; ANODES; WATER;
D O I
10.1002/advs.202403513
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Uncontrollable growth of Zn dendrites, irreversible dissolution of cathode material and solidification of aqueous electrolyte at low temperatures severely restrict the development of aqueous Zn-ion batteries. In this work, 2,2,2-trifluoroethanol (TFEA) with a volume fraction of 50% as a highly compatible polar-solvent is introduced to 1.3 M Zn(CF3SO3)2 aqueous electrolyte, achieving stable high-performance Zn-ion batteries. Massive theoretical calculations and characterization analysis demonstrate that TFEA weakens the tip effect of Zn anode and restrains the growth of Zn dendrites due to electrostatic adsorption and coordinate with H2O to disrupt the hydrogen bonding network in water. Furthermore, TFEA increases the wettability of the cathode and alleviates the dissolution of V2O5, thus improving the capacity of the full battery. Based on those positive effects of TFEA on Zn anode, V2O5 cathode, and aqueous electrolyte, the Zn//Zn symmetric cell delivers a long cycle-life of 782 h at 5 mA cm-2 and 2 mA h cm-2. The full battery still declares an initial capacity of 116.78 mA h g-1, and persists 87.73% capacity in 2000 cycles at -25 degrees C. This work presents an effective strategy for fully compatible co-solvent to promote the stability of Zn anode, V2O5 cathode and aqueous electrolyte for high-performance Zn-ion batteries. Schematic illustrations of the positive effects of TFEA co-solvent in full batteries. image
引用
收藏
页数:14
相关论文
共 73 条
[1]  
Baes C.F.J., 1976, The Hydrolysis of Cations
[2]   Cationic Surfactant-Type Electrolyte Additive Enables Three-Dimensional Dendrite-Free Zinc Anode for Stable Zinc-Ion Batteries [J].
Bayaguud, Aruuhan ;
Luo, Xiao ;
Fu, Yanpeng ;
Zhu, Changbao .
ACS ENERGY LETTERS, 2020, 5 (09) :3012-3020
[3]   Large-area hydrated vanadium oxide/carbon nanotube composite films for high-performance aqueous zinc-ion batteries [J].
Cao, Hongmei ;
Deng, Shenzhen ;
Tie, Zhiwei ;
Tian, Jinlei ;
Liu, Lili ;
Niu, Zhiqiang .
SCIENCE CHINA-CHEMISTRY, 2022, 65 (09) :1725-1732
[4]   Solvation Structure Design for Aqueous Zn Metal Batteries [J].
Cao, Longsheng ;
Li, Dan ;
Hu, Enyuan ;
Xu, Jijian ;
Deng, Tao ;
Ma, Lin ;
Wang, Yi ;
Yang, Xiao-Qing ;
Wang, Chunsheng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (51) :21404-21409
[5]   An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices [J].
Chang, Nana ;
Li, Tianyu ;
Li, Rui ;
Wang, Shengnan ;
Yin, Yanbin ;
Zhang, Huamin ;
Li, Xianfeng .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3527-3535
[6]   Recent advances in energy storage mechanism of aqueous zinc-ion batteries [J].
Chen, Duo ;
Lu, Mengjie ;
Cai, Dong ;
Yang, Hang ;
Han, Wei .
JOURNAL OF ENERGY CHEMISTRY, 2021, 54 :712-726
[7]   Breaking Consecutive Hydrogen-Bond Network Toward High-Rate Hydrous Organic Zinc Batteries [J].
Cui, Changjun ;
Han, Daliang ;
Lu, Haotian ;
Li, Zhiguo ;
Zhang, Kangyu ;
Zhang, Bo ;
Guo, Xiaoxia ;
Sun, Rui ;
Ye, Xiaolin ;
Gao, Jiachen ;
Liu, Yingxin ;
Guo, Yong ;
Meng, Rongwei ;
Wei, Chunguang ;
Yin, Lichang ;
Kang, Feiyu ;
Weng, Zhe ;
Yang, Quan-Hong .
ADVANCED ENERGY MATERIALS, 2023, 13 (31)
[8]   Machine-Learning-Driven G-Quartet-Based Circularly Polarized Luminescence Materials [J].
Dai, Yankai ;
Zhang, Zhiwei ;
Wang, Dong ;
Li, Tianliang ;
Ren, Yuze ;
Chen, Jingqi ;
Feng, Lingyan .
ADVANCED MATERIALS, 2024, 36 (04)
[9]   Long-Term Retention Microbubbles with Three-Layer Structure for Floating Intravesical Instillation Delivery [J].
Deng, Qiurong ;
Xie, Junyi ;
Kong, Shuying ;
Tang, Tianmin ;
Zhou, Jianhua .
SMALL, 2023, 19 (14)
[10]   A Nonflammable Organic Electrolyte with a Weak Association State for Zinc Batteries Operated at-78.5 °C [J].
Du, Haoran ;
Qi, Xiaoqun ;
Qie, Long ;
Huang, Yunhui .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (33)