Design and Development of an Antigen Test for SARS-CoV-2 Nucleocapsid Protein to Validate the Viral Quality Assurance Panels

被引:1
|
作者
Ray, Partha [1 ]
Ledgerwood-Lee, Melissa [1 ]
Brickner, Howard [1 ]
Clark, Alex E. [1 ]
Garretson, Aaron [1 ]
Graham, Rishi [1 ]
Van Zant, Westley [1 ]
Carlin, Aaron F. [1 ,2 ]
Aronoff-Spencer, Eliah S. [1 ]
机构
[1] Univ Calif San Diego, Dept Med, Div Infect Dis & Global Publ Hlth, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Pathol, La Jolla, CA 92093 USA
来源
VIRUSES-BASEL | 2024年 / 16卷 / 05期
关键词
SARS-CoV-2; nucleocapsid protein; monoclonal and polyclonal antibodies; Enzyme-linked immunoassay; peptide epitope mapping; viral quality assurance; RADx; COVID-19; diagnostics; ENTROPY; RESOLUTION; EPITOPES;
D O I
10.3390/v16050662
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The continuing mutability of the SARS-CoV-2 virus can result in failures of diagnostic assays. To address this, we describe a generalizable bioinformatics-to-biology pipeline developed for the calibration and quality assurance of inactivated SARS-CoV-2 variant panels provided to Radical Acceleration of Diagnostics programs (RADx)-radical program awardees. A heuristic genetic analysis based on variant-defining mutations demonstrated the lowest genetic variance in the Nucleocapsid protein (Np)-C-terminal domain (CTD) across all SARS-CoV-2 variants. We then employed the Shannon entropy method on (Np) sequences collected from the major variants, verifying the CTD with lower entropy (less prone to mutations) than other Np regions. Polyclonal and monoclonal antibodies were raised against this target CTD antigen and used to develop an Enzyme-linked immunoassay (ELISA) test for SARS-CoV-2. Blinded Viral Quality Assurance (VQA) panels comprised of UV-inactivated SARS-CoV-2 variants (XBB.1.5, BF.7, BA.1, B.1.617.2, and WA1) and distractor respiratory viruses (CoV 229E, CoV OC43, RSV A2, RSV B, IAV H1N1, and IBV) were assembled by the RADx-rad Diagnostics core and tested using the ELISA described here. The assay tested positive for all variants with high sensitivity (limit of detection: 1.72-8.78 ng/mL) and negative for the distractor virus panel. Epitope mapping for the monoclonal antibodies identified a 20 amino acid antigenic peptide on the Np-CTD that an in-silico program also predicted for the highest antigenicity. This work provides a template for a bioinformatics pipeline to select genetic regions with a low propensity for mutation (low Shannon entropy) to develop robust 'pan-variant' antigen-based assays for viruses prone to high mutational rates.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Evaluation of Lumipulse® G SARS-CoV-2 antigen assay automated test for detecting SARS-CoV-2 nucleocapsid protein (NP) in nasopharyngeal swabs for community and population screening
    Gili, Alessio
    Paggi, Riccardo
    Russo, Carla
    Cenci, Elio
    Pietrella, Donatella
    Graziani, Alessandro
    Stracci, Fabrizio
    Mencacci, Antonella
    INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2021, 105 : 391 - 396
  • [22] A SARS-CoV-2 antibody curbs viral nucleocapsid protein-induced complement hyperactivation
    Kang, Sisi
    Yang, Mei
    He, Suhua
    Wang, Yueming
    Chen, Xiaoxue
    Chen, Yao-Qing
    Hong, Zhongsi
    Liu, Jing
    Jiang, Guanmin
    Chen, Qiuyue
    Zhou, Ziliang
    Zhou, Zhechong
    Huang, Zhaoxia
    Huang, Xi
    He, Huanhuan
    Zheng, Weihong
    Liao, Hua-Xin
    Xiao, Fei
    Shan, Hong
    Chen, Shoudeng
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [23] Structural Insights of the SARS-CoV-2 Nucleocapsid Protein: Implications for the Inner-workings of Rapid Antigen Tests
    Casasanta, Michael A.
    Jonaid, G. M.
    Kaylor, Liam
    Luqiu, William Y.
    DiCecco, Liza-Anastasia
    Solares, Maria J.
    Berry, Samantha
    Dearnaley, William J.
    Kelly, Deborah F.
    MICROSCOPY AND MICROANALYSIS, 2023, 29 (02) : 649 - 657
  • [24] Control of nuclear localization of the nucleocapsid protein of SARS-CoV-2
    Wang, Mengrui
    Valadez-Ingersoll, Maria
    Gilmore, Thomas D.
    VIROLOGY, 2024, 600
  • [25] The biochemical mechanism of SARS-CoV-2 nucleocapsid protein hyperphosphorylation
    Ha, Ya
    Chen, Song
    He, Zunyu
    Kanyo, Jean
    Lam, Tukiet
    Ha, Grace
    Lindenbach, Brett
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2024, 300 (03) : S13 - S13
  • [26] A SARS-CoV-2 coronavirus nucleocapsid protein antigen-detecting lateral flow assay
    Grant, Benjamin D.
    Anderson, Caitlin E.
    Alonzo, Luis F.
    Garing, Spencer H.
    Williford, John R.
    Baughman, Ted A.
    Rivera, Rafael
    Glukhova, Veronika A.
    Boyle, David S.
    Dewan, Puneet K.
    Weigl, Bernhard H.
    Nichols, Kevin P.
    PLOS ONE, 2021, 16 (11):
  • [27] Exploring the Immunodominant Epitopes of SARS-CoV-2 Nucleocapsid Protein as Exposure Biomarker
    Vashisht, Kapil
    Goyal, Bharti
    Pasupureddy, Rahul
    Na, Byoung-Kuk
    Shin, Ho-Joon
    Sahu, Dibakar
    De, Sajal
    Chakraborti, Soumyananda
    Pandey, Kailash C.
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2023, 15 (02)
  • [28] Development of magnetic particle-based chemiluminescence immunoassay for measurement of SARS-CoV-2 nucleocapsid protein
    Xu, Ye
    Xia, Chuan
    Zeng, Xuan
    Qiu, Yilan
    Liao, Minjing
    Jiang, Qing
    Quan, Meifang
    Liu, Rushi
    JOURNAL OF VIROLOGICAL METHODS, 2022, 302
  • [29] Voltammetric-based immunosensor for the detection of SARS-CoV-2 nucleocapsid antigen
    Eissa, Shimaa
    Alhadrami, Hani A.
    Al-Mozaini, Maha
    Hassan, Ahmed M.
    Zourob, Mohammed
    MICROCHIMICA ACTA, 2021, 188 (06)
  • [30] Multicenter Technical Validation of 30 Rapid Antigen Tests for the Detection of SARS-CoV-2 (VALIDATE)
    Greub, Gilbert
    Caruana, Giorgia
    Schweitzer, Michael
    Imperiali, Mauro
    Muigg, Veronika
    Risch, Martin
    Croxatto, Antony
    Opota, Onya
    Heller, Stefanie
    Albertos Torres, Diana
    Tritten, Marie-Lise
    Leuzinger, Karoline
    Hirsch, Hans H.
    Lienhard, Reto
    Egli, Adrian
    MICROORGANISMS, 2021, 9 (12)