Customized Deep Learning Framework with Advanced Sampling Techniques for Lung Cancer Detection using CT Scans

被引:0
|
作者
Mahmmod, Tariq [1 ]
Ayesha, Noor [2 ]
Mujahid, Muhammad [3 ]
Rehman, Amjad [1 ]
机构
[1] Prince Sultan Univ, CCIS, Artificial Intelligence & Data Analyt AIDA Lab, Riyadh, Saudi Arabia
[2] Zhengzhou Univ, Sch Clin Med, Zhengzhou 450001, Henan, Peoples R China
[3] Prince Sultan Univ, Artificial Intelligence & Data Analyt AIDA Lab, Riyadh City, Saudi Arabia
来源
PROCEEDINGS 2024 SEVENTH INTERNATIONAL WOMEN IN DATA SCIENCE CONFERENCE AT PRINCE SULTAN UNIVERSITY, WIDS-PSU 2024 | 2024年
关键词
CT Scan; Lung cancer; Deep learning; SMOTE; CONVOLUTIONAL NEURAL-NETWORK; STATISTICS;
D O I
10.1109/WiDS-PSU61003.2024.00035
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Lung cancer is a devastating disease that kills around five million people annually, making it a major global threat. Timely recognition is critical to improving patient survival. With a focus on pulmonary nodules in medical imaging, CT scans are essential for the screening and identification of lung cancer. This paper introduces a customized deep-learning framework for lung cancer detection using CT Scans. To achieve an accurate and efficient early-stage lung cancer diagnosis, the model makes use of a large dataset of chest CT images for training and validation. The experimental results show that the model outperforms state-of-the-art methods for lung cancer categorization. The model provides a trustworthy and efficient means of early detection of lung cancer, which has the potential to revolutionize the field of lung cancer diagnostics. The deep framework outperforms existing approaches and highlights the need to apply transfer learning to medical image analysis. Because of the technique's extraordinary effectiveness, lung cancer research may be significantly impacted, and improvements in early diagnosis and therapy may result.
引用
收藏
页码:110 / 115
页数:6
相关论文
共 50 条
  • [21] Early Lung Cancer Detection Using Deep Learning Optimization
    Elnakib, Ahmed
    Amer, Hanan M.
    Abou-Chadi, Fatma E. Z.
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2020, 16 (06) : 82 - 94
  • [22] Deep learning assisted COVID-19 detection using full CT-scans
    Rohila, Varan Singh
    Gupta, Nitin
    Kaul, Amit
    Sharma, Deepak Kumar
    INTERNET OF THINGS, 2021, 14
  • [23] Early Detection of Lung Cancer from CT Images: Nodule Segmentation and Classification Using Deep Learning
    Sharma, Manu
    Bhatt, Jignesh S.
    Joshi, Manjunath V.
    TENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2017), 2018, 10696
  • [24] Cancer detection and segmentation using machine learning and deep learning techniques: a review
    Rai, Hari Mohan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (09) : 27001 - 27035
  • [25] DFCV: a framework for evaluation deep learning in early detection and classification of lung cancer
    Alsadoon A.
    Al-Naymat G.
    Osman A.H.
    Alsinglawi B.
    Maabreh M.
    Islam M.R.
    Multimedia Tools and Applications, 2023, 82 (28) : 44387 - 44430
  • [26] Cancer detection and segmentation using machine learning and deep learning techniques: a review
    Hari Mohan Rai
    Multimedia Tools and Applications, 2024, 83 : 27001 - 27035
  • [27] Lung cancer disease prediction with CT scan and histopathological images feature analysis using deep learning techniques
    Rajasekar, Vani
    Vaishnnave, M. P.
    Premkumar, S.
    Sarveshwaran, Velliangiri
    Rangaraaj, V.
    RESULTS IN ENGINEERING, 2023, 18
  • [28] Predicting Lung Cancer Survival Time Using Deep Learning Techniques
    Baker, Qanita Bani
    Gharaibeh, Maram
    Al-Harahsheh, Yara
    2021 12TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2021, : 177 - 181
  • [29] Deep Neural Networks Ensemble for Lung Nodule Detection on Chest CT Scans
    Ardimento, Pasquale
    Aversano, Lerina
    Bernardi, Mario Luca
    Cimitile, Marta
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [30] Lung Cancer Detection Based on CT Scan Images by Using Deep Transfer Learning
    Sajja, Tulasi Krishna
    Devarapalli, Retz Mahima
    Kalluri, Hemantha Kumar
    TRAITEMENT DU SIGNAL, 2019, 36 (04) : 339 - 344