Construction of L2 log-log blowup solutions for the mass critical nonlinear Schrödinger equation

被引:1
作者
Fan, Chenjie [1 ]
Mendelson, Dana [2 ]
机构
[1] Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
关键词
NLS; log-log blowup; random data; GLOBAL WELL-POSEDNESS; DATA CAUCHY-THEORY; SCHRODINGER-EQUATION; WAVE EQUATION; SURE SCATTERING; UP RATE; STATISTICAL-MECHANICS; GIBBS MEASURE; STABILITY; EXISTENCE;
D O I
10.4171/JEMS/1314
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the log-log blowup dynamics for the mass critical nonlinear Schr & ouml;dinger equation on R-2 under rough but structured random perturbations at L-2(R-2) regularity. In particular, by employing probabilistic methods, we provide a construction of a family of L-2(R-2) regularity solutions which do not lie in H-s(R-2) for any s > 0, and which blowup according to the log-log dynamics.
引用
收藏
页码:1795 / 1849
页数:55
相关论文
共 52 条
[1]  
Benyi A., 2015, Appl. Numer. Harmon. Anal., P3
[2]   Invariant measures for the 2D-defocusing nonlinear Schrodinger equation [J].
Bourgain, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 176 (02) :421-445
[3]   PERIODIC NONLINEAR SCHRODINGER-EQUATION AND INVARIANT-MEASURES [J].
BOURGAIN, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 166 (01) :1-26
[4]  
Bourgain J, 1998, INT MATH RES NOTICES, V1998, P253
[5]   Global wellposedness of defocusing critical nonlinear Schrodinger equation in the radial case [J].
Bourgain, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (01) :145-171
[6]  
Bourgain J., 1993, Geom. Funct. Anal., V3, P107, DOI [10.1007/BF01896020, DOI 10.1007/BF01896020]
[7]   Invariant Gibbs measure evolution for the radial nonlinear wave equation on the 3d ball [J].
Bourgain, Jean ;
Bulut, Aynur .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (04) :2319-2340
[8]   Almost Sure Local Well-Posedness for a Derivative Nonlinear Wave Equation [J].
Bringmann, Bjoern .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (11) :8657-8697
[9]   Stable blowup for the focusing energy critical nonlinear wave equation under random perturbations [J].
Bringmann, Bjoern .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 45 (12) :1755-1777
[10]   ALMOST-SURE SCATTERING FOR THE RADIAL ENERGY-CRITICAL NONLINEAR WAVE EQUATION IN THREE DIMENSIONS [J].
Bringmann, Bjoern .
ANALYSIS & PDE, 2020, 13 (04) :1011-1050