THE JACOBI-ORTHOGONALITY IN INDEFINITE SCALAR PRODUCT SPACES

被引:0
作者
Lukic, Katarina [1 ]
机构
[1] Univ Belgrade, Fac Math, Belgrade, Serbia
来源
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD | 2024年 / 115卷 / 129期
关键词
indefinite metric; Osserman tensor; Jacobi-orthogonality; Jacobiduality; quasi-Clifford tensor; DUALITY PRINCIPLE; OSSERMAN;
D O I
10.2298/PIM2429033l
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. We generalize the property of Jacobi-orthogonality to indefinite scalar product spaces. We compare various principles and investigate relations between Osserman, Jacobi-dual, and Jacobi-orthogonal algebraic curvature tensors. We show that every quasi-Clifford tensor is Jacobi-orthogonal. We prove that a Jacobi-diagonalizable Jacobi-orthogonal tensor is Jacobi-dual whenever dX has no null eigenvectors for all nonnull X. We show that any algebraic curvature tensor of dimension 3 is Jacobi-orthogonal if and only if it is of constant sectional curvature. We prove that every 4-dimensional Jacobidiagonalizable algebraic curvature tensor is Jacobi-orthogonal if and only if it is Osserman.
引用
收藏
页码:33 / 44
页数:12
相关论文
共 15 条
[1]   On the duality principle in pseudo-Riemannian Osserman manifolds [J].
Andrejic, V. ;
Rakic, Z. .
JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (10) :2158-2166
[2]   On Quasi-Clifford Osserman Curvature Tensors [J].
Andrejic, Vladica ;
Lukic, Katarina .
FILOMAT, 2019, 33 (04) :1241-1247
[3]   On some aspects of duality principle [J].
Andrejic, Vladica ;
Rakic, Zoran .
KYOTO JOURNAL OF MATHEMATICS, 2015, 55 (03) :567-577
[4]  
Andrejic V, 2010, KRAGUJEV J MATH, V33, P17
[5]  
Andrejie V., arXiv
[6]  
Besse ArthurL., 1987, EINSTEIN MANIFOLDS E, V10, DOI DOI 10.1007/978-3-540-74311-8
[7]   A note on Osserman Lorentzian manifolds [J].
Blazic, N ;
Bokan, N ;
Gilkey, P .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1997, 29 :227-230
[8]   Affine Osserman connections and their Riemann extensions [J].
García-Río, E ;
Kupeli, DN ;
Vázquez-Abal, ME ;
Vázquez-Lorenzo, R .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1999, 11 (02) :145-153
[9]   On a problem of Osserman in Lorentzian geometry [J].
GarciaRio, E ;
Kupeli, DN ;
VazquezAbal, ME .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1997, 7 (01) :85-100
[10]   ISOPARAMETRIC GEODESIC SPHERES AND A CONJECTURE OF OSSERMAN CONCERNING THE JACOBI OPERATOR [J].
GILKEY, P ;
SWANN, A ;
VANHECKE, L .
QUARTERLY JOURNAL OF MATHEMATICS, 1995, 46 (183) :299-320