Ultrasensitive detection of nucleic acid with a CRISPR/Cas12a empowered electrochemical sensor based on antimonene

被引:5
作者
Fan, Taojian [1 ,2 ,3 ]
Zhang, Shaohui [1 ,2 ]
Meng, Changle [1 ,2 ]
Gao, Lingfeng [6 ]
Yan, Li [3 ]
Wang, Hao [1 ,2 ]
Shi, Xin [4 ,5 ]
Ge, Yanqi [1 ,2 ]
Zhang, Han [1 ,2 ]
Hu, Junqing [3 ]
机构
[1] Shenzhen Univ, Coll Phys & Optoelect Engn, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Coll Mechatron & Control Engn, Shenzhen 518060, Peoples R China
[3] Shenzhen Technol Univ, Coll Hlth Sci & Environm Engn, Shenzhen 518118, Peoples R China
[4] Shandong Technol & Business Univ, Sch Maths & Informat Sci, Yantai, Peoples R China
[5] Manchester Metropolitan Univ, Business Sch, All St Campus, Manchester, England
[6] Hangzhou Normal Univ, Minist Educ, Coll Mat Chem & Chem Engn, Key Lab Organosilicon Chem & Mat Technol, Hangzhou 311121, Zhejiang, Peoples R China
关键词
Amplification; -free; Antimonene nanosheets; Electrochemical sensor; CRISPR/Cas12a; GRAPHENE; BIOSENSORS; CRISPR-CAS12A; SARS-COV-2; UNIVERSAL; PLATFORM; ASSAY;
D O I
10.1016/j.flatc.2024.100633
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ultra-sensitive nucleic acid detection is important for rapid prevention of infectious diseases. Recently, clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) systems with great target specificity and programmability have demonstrated amazing capabilities in the field of nucleic acid detection. However, most CRISPR/Cas systems-based strategies still rely on pre-amplification of nucleic acid, which limits their clinical application in point of care detection. Here, we designed a novel electrochemical CRISPR/Cas biosensor (called E-Sb CRISPR) that utilizes antimonene nanosheets (Sb NSs) modifications. Due to the strong interaction between Sb NSs and single stranded DNA (ssDNA), E-Sb CRISPR exhibited specific nucleic acid detection capabilities with a detection limit of 100 aM within 35 min. Notably, the sensor showed excellent selectivity to target DNA in serum in the presence of nucleus acid extracted from other viruses. The excellent stability (8 weeks) and reproducibility (50 cycles) of this sensor were observed. By developing microcircuits and software systems, rapid acquisition of detection results on mobile electronic devices is possible. Therefore, the ESb CRISPR showed great promise as a scalable nucleic acid detection platform for early diagnosis.
引用
收藏
页数:8
相关论文
共 54 条
[1]   Massively multiplexed nucleic acid detection with Cas13 [J].
Ackerman, Cheri M. ;
Myhrvold, Cameron ;
Thakku, Sri Gowtham ;
Freije, Catherine A. ;
Metsky, Hayden C. ;
Yang, David K. ;
Ye, Simon H. ;
Boehm, Chloe K. ;
Kosoko-Thoroddsen, Tinna-Solveig F. ;
Kehe, Jared ;
Nguyen, Tien G. ;
Carter, Amber ;
Kulesa, Anthony ;
Barnes, John R. ;
Dugan, Vivien G. ;
Hung, Deborah T. ;
Blainey, Paul C. ;
Sabeti, Pardis C. .
NATURE, 2020, 582 (7811) :277-+
[2]   Net-Shaped DNA Nanostructures Designed for Rapid/Sensitive Detection and Potential Inhibition of the SARS-CoV-2 Virus [J].
Chauhan, Neha ;
Xiong, Yanyu ;
Ren, Shaokang ;
Dwivedy, Abhisek ;
Magazine, Nicholas ;
Zhou, Lifeng ;
Jin, Xiaohe ;
Zhang, Tianyi ;
Cunningham, Brian T. ;
Yao, Sherwood ;
Huang, Weishan ;
Wang, Xing .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 145 (37) :20214-20228
[3]   CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity [J].
Chen, Janice S. ;
Ma, Enbo ;
Harrington, Lucas B. ;
Da Costa, Maria ;
Tian, Xinran ;
Palefsky, Joel M. ;
Doudna, Jennifer A. .
SCIENCE, 2018, 360 (6387) :436-+
[4]   Electrochemical Biosensors in Point-of-Care Devices: Recent Advances and Future Trends [J].
da Silva, Everson T. S. G. ;
Souto, Denio E. P. ;
Barragan, Jose T. C. ;
Giarola, Juliana de F. ;
de Moraes, Ana C. M. ;
Kubota, Lauro T. .
CHEMELECTROCHEM, 2017, 4 (04) :778-794
[5]   Recent Advances on Electrochemical Biosensing Strategies toward Universal Point-of-Care Systems [J].
Dai, Yifan ;
Liu, Chung Chiun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (36) :12355-12368
[6]   Exploring the Trans-Cleavage Activity of CRISPR-Cas12a (cpf1) for the Development of a Universal Electrochemical Biosensor [J].
Dai, Yifan ;
Somoza, Rodrigo A. ;
Wang, Liu ;
Welter, Jean F. ;
Li, Yan ;
Caplan, Arnold I. ;
Liu, Chung Chiun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (48) :17399-17405
[7]   Ultraeffective Cancer Therapy with an Antimonene-Based X-Ray Radiosensitizer [J].
Duo, Yanhong ;
Huang, Yanyu ;
Liang, Weiyuan ;
Yuan, Riming ;
Li, Yang ;
Chen, Tianfeng ;
Zhang, Han .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (04)
[8]   Biodistribution, degradability and clearance of 2D materials for their biomedical applications [J].
Fan, Taojian ;
Yan, Li ;
He, Shiliang ;
Hong, Qiancun ;
Ai, Fujin ;
He, Shuqing ;
Ji, Tao ;
Hu, Xin ;
Ha, Enna ;
Zhang, Bin ;
Li, Zigang ;
Zhang, Han ;
Chen, Xianfeng ;
Hu, Junqing .
CHEMICAL SOCIETY REVIEWS, 2022, 51 (18) :7732-7751
[9]   Materials chemistry-enabled platforms in detecting sexually transmitted infections: progress towards point-of-care tests [J].
Farokhzad, Nika ;
Tao, Wei .
TRENDS IN CHEMISTRY, 2021, 3 (07) :589-602
[10]   Detecting Liver Cancer Using Cell-Free DNA Fragmentomes [J].
Foda, Zachariah H. ;
Annapragada, Akshaya, V ;
Boyapati, Kavya ;
Bruhm, Daniel C. ;
Vulpescu, Nicholas A. ;
Medina, Jamie E. ;
Mathios, Dimitrios ;
Cristiano, Stephen ;
Niknafs, Noushin ;
Luu, Harry T. ;
Goggins, Michael G. ;
Anders, Robert A. ;
Sun, Jing ;
Meta, Shruti H. ;
Thomas, David L. ;
Kirk, Gregory D. ;
Adleff, Vilmos ;
Phallen, Jillian ;
Scharpf, Robert B. ;
Kim, Amy K. ;
Velculescu, Victor E. .
CANCER DISCOVERY, 2023, 13 (03) :616-631