Bright soliton solutions and collisions for a (3+1)-dimensional coupled nonlinear Schrodinger system in optical-fiber communication

被引:13
作者
Huang, Zhi-Ruo
Tian, Bo [1 ]
Wang, Yun-Po
Sun, Ya
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
(3+1)-dimensional coupled nonlinear Schrodinger system; Bright soliton solutions; Symbolic computation; Hirota method; Elastic and inelastic collisions; SYMBOLIC COMPUTATION; BACKLUND TRANSFORMATION; EQUATIONS; WAVELENGTH; DISPERSION; TRANSMISSION; PROPAGATION;
D O I
10.1016/j.camwa.2015.03.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A (3 + 1)-dimensional coupled nonlinear Schrodinger system is investigated, which describes the pulses in an optical fiber and transverse effects in a nonlinear optical system. With the aid of symbolic computation and Hirota method, bright one- and two-soliton solutions of the system are derived. On the basis of the soliton solutions, we will graphically discuss the head-on collisions which include the elastic and inelastic collisions between the two bright solitons. After an elastic collision, two colliding solitons keep their shapes, amplitudes and velocities unchanged except for some phase shifts, while inelastically, the intensity of one soliton is enhanced, while the other gets suppressed. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1383 / 1389
页数:7
相关论文
共 53 条
[1]  
Abdullaev F., 1993, OPTICAL SOLITONS
[2]  
Ablowitz M.J., 1981, SOLITON INVERSE SCAT
[3]   OVERVIEW OF TRANSVERSE EFFECTS IN NONLINEAR-OPTICAL SYSTEMS [J].
ABRAHAM, NB ;
FIRTH, WJ .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1990, 7 (06) :951-962
[4]  
Agrawal G.P., 2002, Nonlinear fiber optics
[5]  
[Anonymous], 2003, Optical Solitons
[6]   Symbolic calculation in chemistry: Selected examples [J].
Barnett, MP ;
Capitani, JF ;
von zur Gathen, J ;
Gerhard, J .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2004, 100 (02) :80-104
[7]   Symbolic computation of local stability and bifurcation surfaces for nonlinear time-periodic systems [J].
Butcher, EA ;
Sinha, SC .
NONLINEAR DYNAMICS, 1998, 17 (01) :1-21
[8]   MULTISOLITON INTERACTIONS AND WAVELENGTH-DIVISION MULTIPLEXING [J].
CHAKRAVARTY, S ;
ABLOWITZ, MJ ;
SAUER, JR ;
JENKINS, RB .
OPTICS LETTERS, 1995, 20 (02) :136-138
[9]   Exact Projective Excitations of a Generalized (3+1)-Dimensional Gross-Pitaevskii System with Varying Parameters [J].
Fei, Jin-Xi ;
Zheng, Chun-Long .
CHINESE JOURNAL OF PHYSICS, 2013, 51 (02) :200-208
[10]   Anti-dark solitons for a variable-coefficient higher-order nonlinear Schrodinger equation in an inhomogeneous optical fiber [J].
Feng, Yu-Jie ;
Gao, Yi-Tian ;
Sun, Zhi-Yuan ;
Zuo, Da-Wei ;
Shen, Yu-Jia ;
Sun, Yu-Hao ;
Xue, Long ;
Yu, Xin .
PHYSICA SCRIPTA, 2015, 90 (04)