Privacy-preserving distributed learning with chaotic maps

被引:1
作者
Arevalo, Irina [1 ,2 ]
Salmeron, Jose L. [1 ]
Romero, Ivan [1 ]
机构
[1] CUNEF Univ, Madrid, Spain
[2] Univ Pablo de Olavide, Seville, Spain
来源
IEEE CONFERENCE ON EVOLVING AND ADAPTIVE INTELLIGENT SYSTEMS 2024, IEEE EAIS 2024 | 2024年
关键词
FUZZY COGNITIVE MAPS; CLASSIFICATION; OPTIMIZATION; SECURE;
D O I
10.1109/EAIS58494.2024.10570000
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated learning is a distributed machine learning approach that allows several participants to train collaboratively a machine learning model without the data leaving the participant's premises. Nevertheless there are still risks associated to the privacy of the data. In this research the authors develop a framework for training a federated Fuzzy Cognitive Map with an additional privacy layer in the form of differential privacy or chaotic maps-based encryption. The experimental tests show that there is no loss of performance by adding either privacy-preserving method.
引用
收藏
页码:388 / 394
页数:7
相关论文
共 49 条
  • [1] Deep Learning with Differential Privacy
    Abadi, Martin
    Chu, Andy
    Goodfellow, Ian
    McMahan, H. Brendan
    Mironov, Ilya
    Talwar, Kunal
    Zhang, Li
    [J]. CCS'16: PROCEEDINGS OF THE 2016 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2016, : 308 - 318
  • [2] A Survey on Homomorphic Encryption Schemes: Theory and Implementation
    Acar, Abbas
    Aksu, Hidayet
    Uluagac, A. Selcuk
    Conti, Mauro
    [J]. ACM COMPUTING SURVEYS, 2018, 51 (04)
  • [3] Classification of plantar foot alterations by fuzzy cognitive maps against multi-layer perceptron neural network
    Andres Ramirez-Bautista, Julian
    Adalberto Huerta-Ruelas, Jorge
    Koczy, Laszlo T.
    Hatwagner, Miklos F.
    Chaparro-Cardenas, Silvia L.
    Hernandez-Zavala, Antonio
    [J]. BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2020, 40 (01) : 404 - 414
  • [4] Bagdasaryan E, 2020, PR MACH LEARN RES, V108, P2938
  • [5] Alpha-cut based fuzzy cognitive maps with applications in decision-making
    Baykasoglu, Adil
    Golcuk, Ilker
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 2021, 152
  • [6] Benchmarking main activation functions in fuzzy cognitive maps2
    Bueno, Salvador
    Salmeron, Jose L.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (03) : 5221 - 5229
  • [7] Cheng KW, 2021, Arxiv, DOI [arXiv:1901.08755, DOI 10.48550/ARXIV.1901.08755]
  • [8] Federated learning for privacy-preserving AI
    Cheng, Yong
    Liu, Yang
    Chen, Tianjian
    Yang, Qiang
    [J]. COMMUNICATIONS OF THE ACM, 2020, 63 (12) : 33 - 36
  • [9] Romano JD, 2021, Arxiv, DOI arXiv:2012.00058
  • [10] Privacy-preserving and verifiable deep learning inference based on secret sharing
    Duan, Jia
    Zhou, Jiantao
    Li, Yuanman
    Huang, Caishi
    [J]. NEUROCOMPUTING, 2022, 483 : 221 - 234