An adaptive phase-field method for structural topology optimization

被引:5
作者
Jin, Bangti [1 ]
Li, Jing [2 ]
Xu, Yifeng [3 ]
Zhu, Shengfeng [2 ,4 ,5 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[2] East China Normal Univ, Sch Math Sci, Shanghai 200241, Peoples R China
[3] Shanghai Normal Univ, Dept Math & Sci Comp, Key Lab Shanghai Univ, Shanghai 200234, Peoples R China
[4] East China Normal Univ, Key Lab MEA, Minist Educ, Shanghai 200241, Peoples R China
[5] East China Normal Univ, Shanghai Key Lab PMMP, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
Minimum compliance; Adaptive algorithm; Topology optimization; Convergence; A posteriori error estimator; INTERPOLATION; ALGORITHM; SYSTEM; MODEL;
D O I
10.1016/j.jcp.2024.112932
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work, we develop an adaptive algorithm for the efficient numerical solution of the minimum compliance problem in topology optimization. The algorithm employs the phase field approximation and continuous density field. The adaptive procedure is driven by two residual type a posteriori error estimators, one for the state variable and the other for the first -order optimality condition of the objective functional. The adaptive algorithm is provably convergent in the sense that the sequence of numerical approximations generated by the adaptive algorithm contains a subsequence convergent to a solution of the continuous first -order optimality system. We provide several numerical simulations to show the distinct features of the algorithm.
引用
收藏
页数:27
相关论文
共 54 条
[1]  
Ainsworth M., 2000, PURE APPL MATH NEW Y
[2]   Estimator reduction and convergence of adaptive BEM [J].
Aurada, Markus ;
Ferraz-Leite, Samuel ;
Praetorius, Dirk .
APPLIED NUMERICAL MATHEMATICS, 2012, 62 (06) :787-801
[3]  
Bendse MP., 1989, Struct. Optim, V1, P193, DOI [DOI 10.1007/BF01650949, 10.1007/BF01650949]
[4]  
Bendsoe M.P., 2004, Topology optimization: theory, methods, and applications, DOI [10.1007/978-3-662-05086-6, DOI 10.1007/978-3-662-05086-6]
[5]   GENERATING OPTIMAL TOPOLOGIES IN STRUCTURAL DESIGN USING A HOMOGENIZATION METHOD [J].
BENDSOE, MP ;
KIKUCHI, N .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1988, 71 (02) :197-224
[6]   Material interpolation schemes in topology optimization [J].
Bendsoe, MP ;
Sigmund, O .
ARCHIVE OF APPLIED MECHANICS, 1999, 69 (9-10) :635-654
[7]   SHARP INTERFACE LIMIT FOR A PHASE FIELD MODEL IN STRUCTURAL OPTIMIZATION [J].
Blank, Luise ;
Garcke, Harald ;
Hecht, Claudia ;
Rupprecht, Christoph .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2016, 54 (03) :1558-1584
[8]   Design-dependent loads in topology optimization [J].
Bourdin, B ;
Chambolle, A .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2003, 9 (02) :19-48
[9]  
Bourdin B, 2006, SOLID MECH APPL, V137, P207
[10]  
Braess D., 2007, FINITE ELEMENTS THEO, DOI 10.1017/CBO9780511618635