Interactions between trade wind clouds and local forcings over the Great Barrier Reef: a case study using convection-permitting simulations

被引:1
作者
Zhao, Wenhui [1 ]
Huang, Yi [1 ,2 ]
Siems, Steven [2 ,3 ]
Manton, Michael [3 ]
Harrison, Daniel [4 ]
机构
[1] Univ Melbourne, Sch Geog Earth & Atmospher Sci, Melbourne, Vic, Australia
[2] Australian Res Council ARC, Ctr Excellence Climate Extreme CLEX, Melbourne, Vic, Australia
[3] Monash Univ, Sch Earth Atmosphere & Environm, Melbourne, Vic, Australia
[4] Southern Cross Univ, Natl Marine Sci Ctr, Coffs Harbour, NSW, Australia
基金
澳大利亚研究理事会;
关键词
SURFACE OBSERVATIONS; RELATIVE-HUMIDITY; DIMETHYL SULFIDE; SHALLOW CUMULUS; PART II; PRECIPITATION; CLIMATE; RAINFALL; WEATHER; MODEL;
D O I
10.5194/acp-24-5713-2024
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Trade wind clouds are ubiquitous across the subtropical oceans, including the Great Barrier Reef (GBR), playing an important role in modulating the regional energy budget. These shallow clouds, however, are by their nature sensitive to perturbations in both their thermodynamic environment and microphysical background. In this study, we employ the Weather Research and Forecasting (WRF) model with a convection-permitting configuration at 1 km resolution to examine the sensitivity of the trade wind clouds to different local forcings over the GBR. A range of local forcings including coastal topography, sea surface temperature (SST), and local aerosol loading is examined.This study shows a strong response of cloud fraction and accumulated precipitation to orographic forcing both over the mountains and upwind over the GBR. Orographic lifting, low-level convergence, and lower troposphere stability are found to be crucial in explaining the cloud and precipitation features over the coastal mountains downwind of the GBR. However, clouds over the upwind ocean are more strongly constrained by the trade wind inversion, whose properties are, in part, regulated by the coastal topography. On the scales considered in this study, the warm-cloud fraction and the ensuant precipitation over the GBR show only a small response to the local SST forcing, with this response being tied to the surface flux and lower troposphere stability. Cloud microphysical properties, including cloud droplet number concentration, liquid water path, and precipitation, are sensitive to the changes in atmospheric aerosol population over the GBR. While cloud fraction shows little responses, a slight deepening of the simulated clouds is evident over the upwind region in correspondence to the increased aerosol number concentration. A downwind effect of aerosol loading on simulated cloud and precipitation properties is further noted.
引用
收藏
页码:5713 / 5736
页数:24
相关论文
共 115 条
[1]   AEROSOLS, CLOUD MICROPHYSICS, AND FRACTIONAL CLOUDINESS [J].
ALBRECHT, BA .
SCIENCE, 1989, 245 (4923) :1227-1230
[2]  
ALBRECHT BA, 1984, TELLUS A, V36, P187, DOI 10.1111/j.1600-0870.1984.tb00238.x
[3]  
Australian Bureau of Meteorology, Himawari-8 Full Disk Observational Products
[4]  
Australian Bureau of Meteorology, 2024, Daily Rainfall Data
[5]   Spatiotemporal distributions of cloud radiative forcing and response to cloud parameters over the Mongolian Plateau during 2003-2017 [J].
Bao, Shanhu ;
Letu, Husi ;
Zhao, Jun ;
Lei, Yonghui ;
Zhao, Chuanfeng ;
Li, Jiming ;
Tana, Gengen ;
Liu, Chao ;
Guo, Enliang ;
Zhang, Jie ;
He, Jie ;
Bao, Yuhai .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2020, 40 (09) :4082-4101
[6]   A comparison of the 1998 and 2002 coral bleaching events on the Great Barrier Reef: spatial correlation, patterns, and predictions [J].
Berkelmans, R ;
De'ath, G ;
Kininmonth, S ;
Skirving, WJ .
CORAL REEFS, 2004, 23 (01) :74-83
[7]   VARIATIONS IN SHORT-TERM RAINFALL INTENSITY IN RELATION TO SYNOPTIC CLIMATOLOGICAL ASPECT OF THE HUMID TROPICAL NORTHEAST QUEENSLAND COAST [J].
BONELL, M ;
GILMOUR, DA .
SINGAPORE JOURNAL OF TROPICAL GEOGRAPHY, 1980, 1 (02) :16-&
[8]   On dynamic and thermodynamic components of cloud changes [J].
Bony, S ;
Dufresne, JL ;
Le Treut, H ;
Morcrette, JJ ;
Senior, C .
CLIMATE DYNAMICS, 2004, 22 (2-3) :71-86
[9]  
Boucher O, 2014, CLIMATE CHANGE 2013: THE PHYSICAL SCIENCE BASIS, P571, DOI 10.1017/cbo9781107415324.016
[10]   Understanding Mesoscale Aggregation of Shallow Cumulus Convection Using Large-Eddy Simulation [J].
Bretherton, C. S. ;
Blossey, P. N. .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2017, 9 (08) :2798-2821