Performance Characterization of Containerized DNN Training and Inference on Edge Accelerators

被引:0
|
作者
Prashanthi, S. K. [1 ]
Hegde, Vinayaka [1 ]
Patchava, Keerthana [1 ]
Das, Ankita [1 ]
Simmhan, Yogesh [1 ]
机构
[1] Indian Inst Sci, Dept Computat & Data Sci, Bangalore 560012, Karnataka, India
来源
2023 IEEE 30TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING, DATA, AND ANALYTICS, HIPC 2023 | 2023年
关键词
D O I
10.1109/HiPC58850.2023.00028
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Edge devices have typically been used for DNN inferencing. The increase in the compute power of accelerated edges is leading to their use in DNN training also. As privacy becomes a concern on multi-tenant edge devices, Docker containers provide a lightweight virtualization mechanism to sandbox models. But their overheads for edge devices are not yet explored. In this work, we study the impact of containerized DNN inference and training workloads on an NVIDIA AGX Orin edge device and contrast it against bare metal execution on running time, CPU, GPU and memory utilization, and energy consumption. Our analysis provides several interesting insights on these overheads.
引用
收藏
页码:127 / 131
页数:5
相关论文
共 50 条
  • [1] Performance Characterization of using Quantization for DNN Inference on Edge Devices
    Ahn, Hyunho
    Chen, Tian
    Alnaasan, Nawras
    Shafi, Aamir
    Abduljabbar, Mustafa
    Subramoni, Hari
    Panda, Dhabaleswar K.
    2023 IEEE 7TH INTERNATIONAL CONFERENCE ON FOG AND EDGE COMPUTING, ICFEC, 2023, : 1 - 6
  • [2] Exploring In-Memory Accelerators and FPGAs for Latency-Sensitive DNN Inference on Edge Servers
    Suvizi, Ali
    Subramaniam, Suresh
    Lan, Tian
    Venkataramani, Guru
    2024 IEEE CLOUD SUMMIT, CLOUD SUMMIT 2024, 2024, : 1 - 6
  • [3] Targeting DNN Inference Via Efficient Utilization of Heterogeneous Precision DNN Accelerators
    Spantidi, Ourania
    Zervakis, Georgios
    Alsalamin, Sami
    Roman-Ballesteros, Isai
    Henkel, Joerg
    Amrouch, Hussam
    Anagnostopoulos, Iraklis
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2023, 11 (01) : 112 - 125
  • [4] Coordinated Batching and DVFS for DNN Inference on GPU Accelerators
    Nabavinejad, Seyed Morteza
    Reda, Sherief
    Ebrahimi, Masoumeh
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (10) : 2496 - 2508
  • [5] DNN Placement and Inference in Edge Computing
    Bensalem, Mounir
    Dizdarevic, Jasenka
    Jukan, Admela
    2020 43RD INTERNATIONAL CONVENTION ON INFORMATION, COMMUNICATION AND ELECTRONIC TECHNOLOGY (MIPRO 2020), 2020, : 479 - 484
  • [6] SECDA-TFLite: A toolkit for efficient development of FPGA-based DNN accelerators for edge inference
    Haris, Jude
    Gibson, Perry
    Cano, Jose
    Agostini, Nicolas Bohm
    Kaeli, David
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2023, 173 : 140 - 151
  • [7] Performance characterization and optimization of pruning patterns for sparse DNN inference
    Liu Y.
    Sun J.
    Liu J.
    Sun G.
    BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 2022, 2 (04):
  • [8] SECDA: Efficient Hardware/Software Co-Design of FPGA-based DNN Accelerators for Edge Inference
    Haris, Jude
    Gibson, Perry
    Cano, Jose
    Agostini, Nicolas Bohm
    Kaeli, David
    2021 IEEE 33RD INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING (SBAC-PAD 2021), 2021, : 33 - 43
  • [9] DNN Surgery: Accelerating DNN Inference on the Edge Through Layer Partitioning
    Liang, Huanghuang
    Sang, Qianlong
    Hu, Chuang
    Cheng, Dazhao
    Zhou, Xiaobo
    Wang, Dan
    Bao, Wei
    Wang, Yu
    IEEE TRANSACTIONS ON CLOUD COMPUTING, 2023, 11 (03) : 3111 - 3125
  • [10] Performance Evaluation of State-of-the-Art Edge Computing Devices for DNN Inference
    Rancano, Xalo
    Molanes, Roberto Fernandez
    Gonzalez-Val, Carlos
    Rodriguez-Andina, Juan J.
    Farina, Jose
    IECON 2020: THE 46TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2020, : 2286 - 2291