Machine learning-based diagnosis and prognosis of IgAN: A systematic review and meta-analysis

被引:2
作者
Zhuang, Kaiting [1 ]
Wang, Wenjuan [2 ]
Xu, Cheng [1 ]
Guo, Xinru [2 ]
Ren, Xuejing [3 ]
Liang, Yanjun [1 ]
Duan, Zhiyu [1 ]
Song, Yanqi [1 ]
Zhang, Yifan [1 ]
Cai, Guangyan [1 ]
机构
[1] Chinese Peoples Liberat Army Gen Hosp, Natl Clin Res Ctr Kidney Dis, Dept Nephrol, State Key Lab Kidney Dis,Med Ctr 1,Beijing Key Lab, Beijing 100853, Peoples R China
[2] Nankai Univ, Sch Med, Tianjin 300071, Peoples R China
[3] Zhengzhou Univ, Peoples Hosp, Henan Prov Peoples Hosp, Acad Med Sci,Henan Key Lab Kidney Dis & Immunol, Zhengzhou 450003, Henan, Peoples R China
关键词
Machine learning (ML); Prognosis; Diagnosis; IgAN; Meta-analysis; Systematic review; STAGE KIDNEY-DISEASE; NEPHROPATHY PREDICTION TOOL; OXFORD CLASSIFICATION; ARTIFICIAL-INTELLIGENCE; EXTERNAL VALIDATION; RISK-PREDICTION; PROGRESSION; NOMOGRAM; MODELS;
D O I
10.1016/j.heliyon.2024.e33090
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Purpose: Plenty of studies have explored the diagnosis and prognosis of IgA nephropathy (IgAN) based on machine learning (ML), but the accuracy lacks the support of evidence-based medical evidence. We aim at this problem to guide the precision treatment of IgAN. Methods: Embase, Pubmed, Cochrane Library, and Web of Science were searched systematically until February 24th, 2024, for publications on ML-based diagnosis and prognosis of IgAN. Subgroup analysis or meta-regression was conducted according to modeling method, follow-up time, endpoint definition, and variable type. Further, the rank sum test was applied to compare the discrimination ability of prognosis. Results: A total of 47 studies involving 51,935 patients were eligible. Among the 38 diagnostic models, the pooled C-index was 0.902 (95 % CI: 0.878-0.926) in 27 diagnostic models. Of the 162 prognostic models, the C-index for model discrimination of 144 prognostic models was 0.838 (95 % CI: 0.827-0.850) in training. The overall discrimination ability of prognosis was as follows: COX regression > new ML models (e.g. ANN, DT, RF, SVM, XGBoost) > traditional ML models (logistic regression) > Na & iuml;ve Bayesian network (P < 0.05). External validation of IIgAN-RPT in 19 models showed a pooled C-index of 0.801 (95 % CI: 0.784-0.817). Conclusions: New ML models have shown application values that are as good as traditional ML models, both in diagnosis and prognosis. In addition, future models are desired to use a more sensitive prognostic endpoint (albuminuria), improve predictive ability in moderate progression risk, and ultimately translate into clinically applicable intelligent tools.
引用
收藏
页数:16
相关论文
共 85 条
[1]   Application of the International IgA Nephropathy Prediction Tool one or two years post-biopsy [J].
Barbour, Sean J. ;
Coppo, Rosanna ;
Zhang, Hong ;
Liu, Zhi-Hong ;
Suzuki, Yusuke ;
Matsuzaki, Keiichi ;
Er, Lee ;
Reich, Heather N. ;
Barratt, Jonathan ;
Cattran, Daniel C. .
KIDNEY INTERNATIONAL, 2022, 102 (01) :160-172
[2]   Updating the International IgA Nephropathy Prediction Tool for use in children [J].
Barbour, Sean J. ;
Coppo, Rosanna ;
Er, Lee ;
Russo, Maria Luisa ;
Liu, Zhi-Hong ;
Ding, Jie ;
Katafuchi, Ritsuko ;
Yoshikawa, Norishige ;
Xu, Hong ;
Kagami, Shoji ;
Yuzawa, Yukio ;
Emma, Francesco ;
Cambier, Alexandra ;
Peruzzi, Licia ;
Wyatt, Robert J. ;
Cattran, Daniel C. .
KIDNEY INTERNATIONAL, 2021, 99 (06) :1439-1450
[3]   Evaluating a New International Risk-Prediction Tool in IgA Nephropathy [J].
Barbour, Sean J. ;
Coppo, Rosanna ;
Zhang, Hong ;
Liu, Zhi-Hong ;
Suzuki, Yusuke ;
Matsuzaki, Keiichi ;
Katafuchi, Ritsuko ;
Er, Lee ;
Espino-Hernandez, Gabriela ;
Kim, S. Joseph ;
Reich, Heather N. ;
Feehally, John ;
Cattran, Daniel C. ;
Russo, M. L. ;
Troyanov, S. ;
Cook, H. T. ;
Roberts, I. ;
Tesar, V. ;
Maixnerova, D. ;
Lundberg, S. ;
Gesualdo, L. ;
Emma, F. ;
Fuiano, L. ;
Beltrame, G. ;
Rollino, C. ;
Amore, A. ;
Camilla, R. ;
Peruzzi, L. ;
Praga, M. ;
Feriozzi, S. ;
Polci, R. ;
Segoloni, G. ;
Colla, L. ;
Pani, A. ;
Piras, D. ;
Angioi, A. ;
Cancarini, G. ;
Ravera, S. ;
Durlik, M. ;
Moggia, E. ;
Ballarin, J. ;
Di Giulio, S. ;
Pugliese, F. ;
Serriello, I. ;
Caliskan, Y. ;
Sever, M. ;
Kilicaslan, I. ;
Locatelli, F. ;
Del Vecchio, L. ;
Wetzels, J. F. M. .
JAMA INTERNAL MEDICINE, 2019, 179 (07) :942-952
[4]   The MEST score provides earlier risk prediction in IgA nephropathy [J].
Barbour, Sean J. ;
Espino-Hernandez, Gabriela ;
Reich, Heather N. ;
Coppo, Rosanna ;
Roberts, Ian S. D. ;
Feehally, John ;
Herzenberg, Andrew M. ;
Cattran, Daniel C. .
KIDNEY INTERNATIONAL, 2016, 89 (01) :167-175
[5]   IgA nephropathy [J].
Barratt, J ;
Feehally, J .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2005, 16 (07) :2088-2097
[6]   Systematic Microbiome Dysbiosis Is Associated with IgA Nephropathy [J].
Cai, Fengtao ;
Zhou, Chenfen ;
Jiao, Na ;
Liang, Xinling ;
Ye, Zhiming ;
Chen, Wei ;
Yang, Qiongqiong ;
Peng, Hui ;
Tang, Ying ;
Niu, Chaoqun ;
Zhao, Guoping ;
Wang, Zefeng ;
Zhang, Guoqing ;
Yu, Xueqing .
MICROBIOLOGY SPECTRUM, 2023, 11 (03)
[7]   Identification and external validation of IgA nephropathy patients benefiting from immunosuppression therapy [J].
Chen, Tingyu ;
Xia, Eryu ;
Chen, Tiange ;
Zeng, Caihong ;
Liang, Shaoshan ;
Xu, Feng ;
Qin, Yong ;
Li, Xiang ;
Zhang, Yuan ;
Liang, Dandan ;
Xie, Guotong ;
Liu, Zhihong .
EBIOMEDICINE, 2020, 52
[8]   Prediction and Risk Stratification of Kidney Outcomes in Iga Nephropathy [J].
Chen, Tingyu ;
Li, Xiang ;
Li, Yingxue ;
Xia, Eryu ;
Qin, Yong ;
Liang, Shaoshan ;
Xu, Feng ;
Liang, Dandan ;
Zeng, Caihong ;
Liu, Zhihong .
AMERICAN JOURNAL OF KIDNEY DISEASES, 2019, 74 (03) :300-309
[9]   VGG16-based intelligent image analysis in the pathological diagnosis of IgA nephropathy [J].
Chen, Ying ;
Chen, Yinyin ;
Fu, Shuangshuang ;
Yin, Wei ;
Liu, Kanghan ;
Qian, Shuyi .
JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2023, 16 (03)
[10]   Tubular decoy receptor 2 as a predictor of prognosis in patients with immunoglobulin A nephropathy [J].
Dai, Huanzi ;
Hu, Wei ;
Lin, Lirong ;
Wang, Liming ;
Chen, Jia ;
He, Yani .
CLINICAL KIDNEY JOURNAL, 2021, 14 (05) :1458-1468