Multifaceted Characterization Methodology for Understanding Nonidealities in Perovskite Solar Cells: A Passivation Case Study

被引:2
作者
Parion, Jonathan [1 ,2 ,3 ,4 ]
Ramesh, Santhosh [1 ,3 ]
Subramaniam, Sownder [1 ,3 ,5 ]
Vrielinck, Henk [6 ]
Duerinckx, Filip [1 ,3 ]
Radhakrishnan, Hariharsudan Sivaramakrishnan [1 ,3 ]
Poortmans, Jef [1 ,2 ,3 ,5 ]
Lauwaert, Johan [4 ]
Vermang, Bart [1 ,2 ,3 ]
机构
[1] Imec Div IMOMEC, Thorpk 8320, B-3600 Genk, Belgium
[2] Hasselt Univ, Wetenschapspk 1, B-3590 Diepenbeek, Belgium
[3] EnergyVille, Thorpk 8320, B-3600 Genk, Belgium
[4] Univ Ghent, Dept Elect & Informat Syst, Technol Pk 126, B-9052 Zwijnaarde, Belgium
[5] Katholieke Univ Leuven, Dept Elect Engn, Kasteelpk Arenberg 10, B-3001 Leuven, Belgium
[6] Univ Ghent, Dept Solid State Sci, Krijgslaan 281-S1, B-9000 Ghent, Belgium
关键词
characterizations; passivations; perovskite solar cells; surface treatments; HIGH-PERFORMANCE; CAPACITANCE; HYSTERESIS; MOBILITIES; IMPEDANCE;
D O I
10.1002/solr.202400529
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A multifaceted characterization approach is proposed, aiming to establish a link between nanoscale electrical properties and macroscale device characteristics. Current-voltage (I-V) measurements are combined with admittance spectroscopy (AS) and deep-level transient spectroscopy (DLTS) for the analysis of charge-related performance losses with time-of-flight secondary-ion mass spectrometry to complete the understanding of ionic motion in the device. This is applied to the study of surface treatment in perovskite solar cells, which implements several strategies to improve band alignment, perovskite grain growth, and chemical passivation. An increase of both open-circuit voltage (Voc) and fill factor of respectively 90 mV and 11% is shown after surface treatment, with an absolute efficiency increase of 4%. AS measurements, coupled with a lumped elements model, rule out the impact of transport layers as the origin of the performance improvement, rather pointing toward a reduction in ionic resistance in the perovskite bulk. Analysis of the DLTS response yields an activation energy of 0.41 eV, which is likely related to the same ionic mechanism discovered with AS. Finally, both of these techniques enable to show that the surface treatment main contribution is to reduce ion-related recombination of charge carriers. Characterization is used for the study of surface treatment in perovskite solar cells. Current-voltage measurements show a 90 mV increase in open-circuit voltage, 11 % increase in fill-factor and 4 % increase in efficiency. Capacitance-based measurements show an increase in ionic resistance in the perovskite bulk and an activation energy of 0.41 eV, pointing toward a reduction in ion-assisted charge carrier recombination.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:8
相关论文
共 39 条
[1]   Influence of Charge Transport Layers on Capacitance Measured in Halide Perovskite Solar Cells [J].
Awni, Rasha A. ;
Song, Zhaoning ;
Chen, Cong ;
Li, Chongwen ;
Wang, Changlei ;
Razooqi, Mohammed A. ;
Chen, Lei ;
Wang, Xiaoming ;
Ellingson, Randy J. ;
Li, Jian, V ;
Yan, Yanfa .
JOULE, 2020, 4 (03) :644-657
[2]   Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells [J].
Aydin, Erkan ;
Ugur, Esma ;
Yildirim, Bumin K. ;
Allen, Thomas G. ;
Dally, Pia ;
Razzaq, Arsalan ;
Cao, Fangfang ;
Xu, Lujia ;
Vishal, Badri ;
Yazmaciyan, Aren ;
Said, Ahmed A. ;
Zhumagali, Shynggys ;
Azmi, Randi ;
Babics, Maxime ;
Fell, Andreas ;
Xiao, Chuanxiao ;
De Wolf, Stefaan .
NATURE, 2023, 623 (7988) :732-+
[3]   Room-Temperature-Sputtered Nanocrystalline Nickel Oxide as Hole Transport Layer for p-i-n Perovskite Solar Cells [J].
Aydin, Erkan ;
Troughton, Joel ;
De Bastiani, Michele ;
Ugur, Esma ;
Sajjad, Muhammad ;
Alzahrani, Areej ;
Neophytou, Marios ;
Schwingenschlogl, Udo ;
Laquai, Frederic ;
Baran, Derya ;
De Wolf, Stefaan .
ACS APPLIED ENERGY MATERIALS, 2018, 1 (11) :6227-6233
[4]   Control of Electrical Potential Distribution for High-Performance Perovskite Solar Cells [J].
Cai, Molang ;
Ishida, Nobuyuki ;
Li, Xing ;
Yang, Xudong ;
Noda, Takeshi ;
Wu, Yongzhen ;
Xie, Fengxian ;
Naito, Hiroyoshi ;
Fujita, Daisuke ;
Han, Liyuan .
JOULE, 2018, 2 (02) :296-306
[5]  
Colinge CA Colinge J., 2002, PHYS SEMICONDUCTOR D
[6]   Tandems have the power Perovskite-silicon tandem solar cells b reak the 30% efficiency threshold [J].
De Wolf, Stefaan ;
Aydin, Erkan .
SCIENCE, 2023, 381 (6653) :30-31
[7]   Pathways toward 30% Efficient Single-Junction Perovskite Solar Cells and the Role of Mobile Ions [J].
Diekmann, Jonas ;
Caprioglio, Pietro ;
Futscher, Moritz H. ;
Le Corre, Vincent M. ;
Reichert, Sebastian ;
Jaiser, Frank ;
Arvind, Malavika ;
Toro, Lorena Perdigon ;
Gutierrez-Partida, Emilio ;
Pena-Camargo, Francisco ;
Deibel, Carsten ;
Ehrler, Bruno ;
Unold, Thomas ;
Kirchartz, Thomas ;
Neher, Dieter ;
Stolterfoht, Martin .
SOLAR RRL, 2021, 5 (08)
[8]   MOBILITIES OF CHARGE-CARRIERS IN C-60 ORTHORHOMBIC SINGLE-CRYSTAL [J].
FRANKEVICH, E ;
MARUYAMA, Y ;
OGATA, H ;
ACHIBA, Y ;
KIKUCHI, K .
SOLID STATE COMMUNICATIONS, 1993, 88 (02) :177-181
[9]   Recent Progresses on Defect Passivation toward Efficient Perovskite Solar Cells [J].
Gao, Feng ;
Zhao, Yang ;
Zhang, Xingwang ;
You, Jingbi .
ADVANCED ENERGY MATERIALS, 2020, 10 (13)
[10]   Beyond Protocols: Understanding the Electrical Behavior of Perovskite Solar Cells by Impedance Spectroscopy [J].
Ghahremanirad, Elnaz ;
Almora, Osbel ;
Suresh, Sunil ;
Drew, Amandine A. ;
Chowdhury, Towhid H. ;
Uhl, Alexander R. .
ADVANCED ENERGY MATERIALS, 2023, 13 (30)