Ammonia energy fraction effect on the combustion and reduced NOX emission of ammonia/diesel dual fuel

被引:4
|
作者
Qian, Feng [1 ]
Zhang, Shilong [1 ]
Wang, Jie [1 ]
Zhu, Neng [1 ]
Bao, Xiong [1 ]
Yang, Hongyun [2 ]
Xu, Xiaowei [1 ]
Alshahrani, Wafa A. [3 ]
Helal, Mohamed H. [4 ]
Guo, Zhanhu [2 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Automobile & Traff Engn, Wuhan 430065, Hubei, Peoples R China
[2] Xiangtan Univ, Dept Chem Engn, Xiangtan 411105, Hunan, Peoples R China
[3] Univ Bisha, Coll Sci, Dept Chem, Bisha 61922, Saudi Arabia
[4] Northern Border Univ, Coll Sci & Arts, Dept Chem, Rafha 91911, Saudi Arabia
关键词
Ammonia; Diesel; Ammonia energy fractions; Combustion; NOx emissions; OXIDATION;
D O I
10.1016/j.envres.2024.119530
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
With stringent regulations of internal combustion engine on reducing CO2 emission, ammonia has been used as an alternative fuel. Investigating how engine-related performance is affected by partial ammonia replacement of diesel fuel is essential for understanding the combustion. Therefore, in this study, a three-dimensional numerical simulation model is developed for the burning of two fuels of diesel and ammonia based on relevant parameters (i.e., compression ratio, load, ammonia energy fraction, etc.) in a lab-made diesel engine. The consequences of load and compression proportion on combustion and pollutant emissions are investigated for ammonia energy fractions between 50% and 90%. When the ammonia portion rises, the increased ammonia equivalent ratio causes ammonia to move away from the dilute combustion boundary and accelerates the combustion rate of ammonia. An increase in compression ratio significantly increases the specified thermal performance and combustion efficacy. When the compression ratio is 16, as the ammonia energy fractions increases, due to the increase in the proportion of ammonia, that is, the proportion of nitrogen atoms increases, more NOx is generated during the combustion process. When the ammonia substitution rate is 90%, as the compression ratio increases, the cylinder pressure and temperature increase. The combustion efficiency of ammonia increases, generating more NOx and NOx emissions can reach 0.66 mg/m3. At a compression ratio of 18, the NOx emissions can reach 1.59 mg/m3. However, under medium and low load conditions, as the ammonia fraction increases, the total energy of fuel decreases, and the combustion efficiency of ammonia decreases, resulting in a decrease in the heat released during combustion and a decrease in NOx emissions. When the ammonia substitution rate is 90% and the load is 25%, NOx emissions reach 0.1 mg/m3. This research provides theoretical suggestions for the profitable and use ammonia fuel in internal combustion engines in a clean manner.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] A reduced combustion mechanism of ammonia/diesel optimized with multi-objective genetic algorithm
    Sun, Wanchen
    Lin, Shaodian
    Zhang, Hao
    Guo, Liang
    Zeng, Wenpeng
    Zhu, Genan
    Jiang, Mengqi
    DEFENCE TECHNOLOGY, 2024, 34 : 187 - 200
  • [32] Generation mechanism and emission characteristics of N2O and NOx in ammonia-diesel dual-fuel engine
    Wu, Binyang
    Wang, Yusong
    Wang, Decheng
    Feng, Yongming
    Jin, Shouying
    ENERGY, 2023, 284
  • [33] Optimization of ammonia energy ratio and injection timing for ammonia diesel dual-fuel engines based on RSM
    Chen, Yanhui
    Zhang, Jian
    Zhang, Zhiqing
    Zhang, Bin
    Hu, Jingyi
    Zhong, Weihuang
    Ye, Yanshuai
    FUEL, 2025, 381
  • [34] Combustion Behaviors and Unregular Emission Characteristics in an Ammonia-Diesel Engine
    Cai, Kaiyuan
    Liu, Yi
    Chen, Qingchu
    Qi, Yunliang
    Li, Li
    Wang, Zhi
    ENERGIES, 2023, 16 (19)
  • [35] Experimental and numerical analysis of unburned ammonia and nitrous oxide emission characteristics in ammonia/diesel dual-fuel engine
    Niki, Yoichi
    INTERNATIONAL JOURNAL OF ENGINE RESEARCH, 2023, 24 (09) : 4190 - 4203
  • [36] Ammonia-enriched biogas as an alternative fuel in diesel engines: Combustion, performance and emission analysis
    Ramar, Kumarasubramanian
    Subbiah, Ganesan
    Almoallim, Hesham S.
    FUEL, 2024, 369
  • [37] Numerical investigation and optimization of the ammonia/diesel dual fuel engine combustion under high ammonia substitution ratio
    Zhang, Shouzhen
    Tang, Qinglong
    Liu, Haifeng
    Yang, Rui
    Yao, Mingfa
    JOURNAL OF THE ENERGY INSTITUTE, 2024, 117
  • [38] Impact of spray interaction on ammonia/diesel dual-fuel combustion and emission under engine relevant conditions
    Xu, Leilei
    Dong, Pengbo
    Zhang, Zhenxian
    Bu, Jingqi
    Tian, Jiangping
    Long, Wuqiang
    Liu, Haifeng
    Bai, Xue-Song
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2024, 40 (1-4)
  • [39] Effect of Selective Non-Catalytic Reduction Reaction on the Combustion and Emission Performance of In-Cylinder Direct Injection Diesel/Ammonia Dual Fuel Engines
    Wang, Zhongcheng
    Li, Ruhong
    Zhu, Jie
    Fu, Zhenqiang
    ENERGIES, 2025, 18 (03)
  • [40] Development of Ammonia Combustion Technology for NOx Reduction
    Rizi, Hossein Ali Yousefi
    Shin, Donghoon
    ENERGIES, 2025, 18 (05)