Evaluation of Hyperspectral Unmixing Methods: A Comparative Study for Very-High Spatial Resolution Hyperspectral Images

被引:0
|
作者
Chavez-Lopez, Ana Cecilia [1 ]
Velez-Reyes, Miguel [1 ]
机构
[1] Univ Texas El Paso, Dept Elect & Comp Engn, Sensor & Signal Analyt Lab, El Paso, TX 79968 USA
来源
2024 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION, SSIAI | 2024年
基金
美国海洋和大气管理局;
关键词
Hyperspectral imaging; unmixing; very high spatial resolution imaging; unsupervised unmixing; endmember extraction;
D O I
10.1109/SSIAI59505.2024.10508656
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperspectral unmixing (HU) in Hyperspectral Imaging (HSI) analyzes and breaks down the constituent components within a pixel, providing insights into the object composition within subpixel regions. The availability of diverse methodologies for endmember extraction (EE) are available for HU. Recent work shows the potential value of HU in Very High Spatial Resolution Hyperspectral Images (VHSR-HSI), enabling spectral signature extraction, capturing spectral variability and extracting material spatial distribution. In this study, we aim to study the effectiveness of traditional endmember extraction algorithms for HU within the realm of VHSR-HSI. Preliminary results using and comparing multiple endmember extraction techniques are presented, placing specific emphasis on the efficacy of N- FINDR, Pixel Purity Index (PPI) and a modified version of PPI developed by the authors. Our approach is applied to hyperspectral images obtained from close-range observations using a standoff hyperspectral imager. Results show the effectiveness of NFINDR and modified PPI to extract the spectral signature of the different classes in the image.
引用
收藏
页码:53 / 56
页数:4
相关论文
共 50 条
  • [21] Hyperspectral Image Super-Resolution Based on Spatial Group Sparsity Regularization Unmixing
    Li, Jun
    Peng, Yuanxi
    Jiang, Tian
    Zhang, Longlong
    Long, Jian
    APPLIED SCIENCES-BASEL, 2020, 10 (16):
  • [22] Local Spectral Similarity-Guided Sparse Unmixing of Hyperspectral Images With Spatial Graph Regularization
    Liang, Bingkun
    Li, Fan
    Zhang, Shaoquan
    Plaza, Antonio
    Deng, Chengzhi
    Lai, Pengfei
    Zheng, Jiajun
    Wang, Shengqian
    Su, Dingli
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61 : 1 - 15
  • [23] A comprehensive investigation of image fusion methods for spatial enhancement of hyperspectral images
    Yilmaz, Volkan
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (11) : 4151 - 4186
  • [24] Mapping of Clay Montmorillonite Abundance in Agricultural Fields Using Unmixing Methods at Centimeter Scale Hyperspectral Images
    Ducasse, Etienne
    Adeline, Karine
    Hohmann, Audrey
    Achard, Veronique
    Bourguignon, Anne
    Grandjean, Gilles
    Briottet, Xavier
    REMOTE SENSING, 2024, 16 (17)
  • [25] GROUND TRUTH SIMULATION FOR DEEP LEARNING CLASSIFICATION OF MID-RESOLUTION VENUS IMAGES VIA UNMIXING OF HIGH-RESOLUTION HYPERSPECTRAL FENIX DATA
    Faran, Ido
    Netanyahu, Nathan S.
    David, Eli
    Shoshany, Maxim
    Kizel, Fadi
    Chang, Jisung Geba
    Rud, Ronit
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 807 - 810
  • [26] Near infrared hyperspectral imaging and spectral unmixing methods for evaluation of fiber distribution in enriched pasta
    Teixeira Badaro, Amanda
    Manuel Amigo, Jose
    Blasco, Jose
    Aleixos, Nuria
    Ferreira, Amanda Rios
    Pedrosa Silva Clerici, Maria Teresa
    Barbin, Douglas Fernandes
    FOOD CHEMISTRY, 2021, 343
  • [27] Exploiting Spectral and Spatial Information in Hyperspectral Urban Data With High Resolution
    Dell'Acqua, F.
    Gamba, P.
    Ferrari, A.
    Palmason, J. A.
    Benediktsson, J. A.
    Arnason, K.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2004, 1 (04) : 322 - 326
  • [28] Study on the Effect of Pixel Resolution and Blending Grade on Near-Infrared Hyperspectral Unmixing of Tablets
    Lopes, Marta B.
    Wolff, Jean-Claude
    Bioucas-Dias, Jose M.
    Figueiredo, Mario A. T.
    APPLIED SPECTROSCOPY, 2011, 65 (02) : 193 - 200
  • [29] Hyperspectral Image Super-Resolution Based on Spatial Correlation-Regularized Unmixing Convolutional Neural Network
    Lu, Xiaochen
    Yang, Dezheng
    Zhang, Junping
    Jia, Fengde
    REMOTE SENSING, 2021, 13 (20)
  • [30] Study of pansharpening methods applied to hyperspectral images of sediment cores (Poster)
    Jacq, Kevin
    Coquin, Didier
    Fanget, Bernard
    Perrette, Yves
    Debret, Maxime
    2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019), 2019,