Evaluation of Hyperspectral Unmixing Methods: A Comparative Study for Very-High Spatial Resolution Hyperspectral Images

被引:0
|
作者
Chavez-Lopez, Ana Cecilia [1 ]
Velez-Reyes, Miguel [1 ]
机构
[1] Univ Texas El Paso, Dept Elect & Comp Engn, Sensor & Signal Analyt Lab, El Paso, TX 79968 USA
来源
2024 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION, SSIAI | 2024年
基金
美国海洋和大气管理局;
关键词
Hyperspectral imaging; unmixing; very high spatial resolution imaging; unsupervised unmixing; endmember extraction;
D O I
10.1109/SSIAI59505.2024.10508656
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperspectral unmixing (HU) in Hyperspectral Imaging (HSI) analyzes and breaks down the constituent components within a pixel, providing insights into the object composition within subpixel regions. The availability of diverse methodologies for endmember extraction (EE) are available for HU. Recent work shows the potential value of HU in Very High Spatial Resolution Hyperspectral Images (VHSR-HSI), enabling spectral signature extraction, capturing spectral variability and extracting material spatial distribution. In this study, we aim to study the effectiveness of traditional endmember extraction algorithms for HU within the realm of VHSR-HSI. Preliminary results using and comparing multiple endmember extraction techniques are presented, placing specific emphasis on the efficacy of N- FINDR, Pixel Purity Index (PPI) and a modified version of PPI developed by the authors. Our approach is applied to hyperspectral images obtained from close-range observations using a standoff hyperspectral imager. Results show the effectiveness of NFINDR and modified PPI to extract the spectral signature of the different classes in the image.
引用
收藏
页码:53 / 56
页数:4
相关论文
共 50 条
  • [1] Unmixing-based Fusion of Hyperspectral Images with High Spatial Resolution Images
    Gercek, Deniz
    Cesmeci, Davut
    Gullu, Mehmet Kemal
    Erturk, Alp
    Erturk, Sarp
    2013 21ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2013,
  • [2] UNDERSTANDING THE IMPACT OF SPATIAL RESOLUTION IN UNMIXING OF HYPERSPECTRAL IMAGES
    Santos-Garcia, Andrea
    Velez-Reyes, Miguel
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVI, 2010, 7695
  • [3] Spectral Unmixing for the Classification of Hyperspectral Images at a Finer Spatial Resolution
    Villa, Alberto
    Chanussot, Jocelyn
    Benediktsson, Jon Atli
    Jutten, Christian
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2011, 5 (03) : 521 - 533
  • [4] Spatial Regularization for the Unmixing of Hyperspectral Images
    Bauer, Sebastian
    Neumann, Florian
    Leon, Fernando Puente
    AUTOMATED VISUAL INSPECTION AND MACHINE VISION, 2015, 9530
  • [5] Comparison of Hyperspectral Unmixing Methods for Ship Detection on Airborne Hyperspectral Images
    Kim, Tae-Sung
    Park, Jae-Jin
    Park, Kyung-Ae
    Oh, Sangwoo
    REMOTE SENSING OF THE OCEAN, SEA ICE, COASTAL WATERS, AND LARGE WATER REGIONS 2020, 2020, 11529
  • [6] VARIATIONAL METHODS FOR SPECTRAL UNMIXING OF HYPERSPECTRAL IMAGES
    Eches, Olivier
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    Snoussi, Hichem
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 957 - 960
  • [7] INVERSION OF TRUE LEAF REFLECTANCE FROM VERY HIGH SPATIAL RESOLUTION HYPERSPECTRAL IMAGES
    Ihalainen, Olli
    Mottus, Matti
    Juola, Jussi
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7579 - 7582
  • [8] Enhancing the Spatial Resolution of Hyperspectral Images Combining High-Accuracy Surface Modeling and Subpixel Unmixing
    Chen, Jia
    Li, Jun
    Gamba, Paolo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [9] The Spatial LASSO With Applications to Unmixing Hyperspectral Biomedical Images
    Samarov, Daniel V.
    Litorja, Maritoni
    Hwang, Jeeseong
    TECHNOMETRICS, 2015, 57 (04) : 503 - 513
  • [10] Leveraging Very-High Spatial Resolution Hyperspectral and Thermal UAV Imageries for Characterizing Diurnal Indicators of Grapevine Physiology
    Maimaitiyiming, Matthew
    Sagan, Vasit
    Sidike, Paheding
    Maimaitijiang, Maitiniyazi
    Miller, Allison J.
    Kwasniewski, Misha
    REMOTE SENSING, 2020, 12 (19) : 1 - 30